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ABSTRACT
Resource constraints are one of the main design challenges for 
wireless sensor network applications and visual sensing networks
that employ cameras in particular. The objective in this paper is 
to enable the sensors to be context-aware by utilizing application-
level information, to prioritize parts of an image, and only transmit 
those parts that contribute most to the utility of the application.
We, therefore, study online-learning of visual attention models for 
the use case of person detection and counting. We analyze how
the resulting models can prioritize relevant elements of a partial 
image, so that object detection remains accurate compared to a 
random selection strategy when resources for transmission get 
scarce. Results show that such attention models can be learned
also under constraints and converge towards the true models. For 
the application performance, we observed an average reduction
of errors (the number of undetected persons) of 55% compared to 
policies without a corresponding attention model.

KEYWORDS
adaptive sensing, crowd detection, internet of things, image pro-
cessing, machine learning, online learning
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1 INTRODUCTION
Visual sensor networks that use cameras as main detectors are 
interesting since they can be installed and utilized quite flexibly,
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and used for a wide range of use cases, like surveillance [12], en-
vironmental monitoring [5], or agriculture [6]. The problem is
that they can be resource-intensive in terms of transmission band-
width, which can be a challenge both for the energy consumption
of the individual sensor as well as the load of the wireless chan-
nels in the network [5, 15]. Efficient operation through low-power
computation, optimized protocols and energy harvesting [14] are
technologies to facilitate these constraints at a lower level. Trans-
missions may also be reduced through compression [12] or change
detection [6] directly at the image level.

In addition to such lower-level optimizations, the application
level adds possibilities to align the operation of the device with its
actual utility. Given the specific application goals, not all observa-
tions are equally useful, and devices can benefit from the ability
to prioritize data, also referred to as value-of-information [1]. The
precondition for such frugal, self-aware operation is knowledge
within the device about its own operation, the environment, and the
goals of the application. With such knowledge, devices can use their
resources more strategically on data of high value and are hence
better prepared to maintain their utility also in constrained situa-
tions. Such approaches are also referred to as self-adaptive [2, 11],
context-aware or cognitive IoT [4].

In this paper, we follow such a self-adaptive and cognitive ap-
proach and present a visual sensing network with the specific use
case of detecting persons in a skiing area to estimate its busyness
and utilization. We want to find out to which degree we can learn
and utilize visual attention models. These models capture which
parts of an image are relevant for people counting, so that devices
can decide which parts of an image to transmit once transmission
needs to be restricted. The key challenges with such an approach
are that (1) sensors are plentiful and deployed in heterogeneous
settings which require individual adaptation, and learning must
therefore happen autonomously; (2) learning needs to start without
prior knowledge, as data only becomes available after deployment;
(3) learning happens also during resource-constrained operations,
that means, it must be possible to also learn with reduced data
transmissions.

We, therefore, describe and study the effect of a visual attention
model that partitions a camera image into discrete tiles, and that
captures which tiles are relevant for the detection of persons by
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analyzing the bounding boxes from an image recognition algorithm. 
Results show that the attention models acquired through reduced 
transmission levels converge with the true values, and that utilizing 
attention models can improve the accuracy of the applications 
considerably, when compared to policies with similar reductions 
that do not use the knowledge from the attention models.

The remainder of this paper is organized as follows. Section 2 
provides a brief account of state-of-the-art solutions that are related 
to our work. In Section 3 we present the basic use case, while in 
Section 4 we develop the concept of visual attention and how it 
is learned and acted upon. Section 5 evaluates the results of our 
solution.

The complete code of our experiments is publicly available.1

2 RELATED WORK
The approach to use constrained resources strategically on in-
formation items that are valuable is also referred to as value-of-
information and finds its application in a wide range of use cases in 
IoT and wireless sensor networks, see e.g., [1]. To avoid inefficient 
operation due to static parameter settings in changing environ-
ments, numerous approaches have been proposed in the litera-
ture to make IoT systems context-aware and self-adaptive [2, 11]. 
These approaches mostly employ the MAPE (Monitor-Analyze-
Plan-Execute) mechanism for self-adaptation in different tiers of 
the system like sensor, communication layer or cloud.

For real-time visual surveillance applications, it is desired that 
the transmission cost of sending continuous images for monitoring 
a static environment should be minimal. For example, Ji et al. pre-
sented a scheme based on dissimilarity measure to transmit only 
parts of the modified image for the application of wide-area agri-
culture farms [6]. The dissimilarity measure compares the current 
image with the previous image and identifies changed patches to 
send. In this way, the multimedia size is reduced and the required 
bandwidth for transmission via IoT communication protocols is re-
spected. However, this requires an application-specific dissimilarity 
threshold.

Similarly, to relax channel occupancy in Narrow Band (NB)-
IoT, Khan et al. [8] present an approach to run object detection 
on a gateway and send only detected parts. This follows a similar 
principle of utilizing information about object locations as we do, 
but does not learn an attention model as we do for this self-adaptive 
approach. In addition, several lightweight image transmission and 
compression techniques via LoRa technology have been proposed 
to address bandwidth and power limitations [15].

To avoid the transmission of images entirely, they could also be 
processed directly on the sensor device. Some object detection and 
classification has recently become possible on low-power embedded 
systems [10]. However, this approach currently only handles objects 
of similar size, and are not as flexible as we need for our use case, 
where persons can appear in various parts of the image, stand in 
groups or have different sizes. When these approaches become more 
capable, they could potentially benefit from learning an attention 
model as we explore here.

1https://github.com/areebasad/Learning-Attention-Models-for-Resource-
Constrained-Self-Adaptive-Visual-Sensing-Applications

Figure 1: Two persons detected by the YOLO image recogni-
tion algorithm with corresponding confidence

Complementing these early works, in this paper, our goal is to
present a self-adaptive approach for resource-constrained IoT sys-
tems that can learn from the environment and can adapt according
to the changes and utilize on-board resources efficiently, further to
maintain the device utility.

3 BASIC PERSON DETECTION
The application in our case study estimates the busyness of a skiing
area by detecting and counting persons on images captured by
cameras. Such data can be used to estimate the demand for public
transport, parking, or the opening hours of restaurants, among oth-
ers. The basis for our case study is data from five cameras deployed
at different locations in a cross-country skiing area in Trondheim,
Norway. Images are taken at a fixed interval of 10 minutes.

The person detection is done using a deep neural network for
general object detection. It follows the You only look once approach
(YOLO) [7], which can detect several objects in a single inference
step. The benefit of such a general detection model is that it can
detect persons of various sizes, postures and locations within an
image, so that the camera devices need no particular strategic place-
ment, which, in turn, simplifies deployment. The output of the
object detection model is a set of bounding boxes, associated with
the detected object (like person) and a confidence level. Figure 1
shows the result of the object detection, depicting recognition of
two persons with their confidence scores. Experience shows that
confidence levels above 0.5 provide good results for person count-
ing in this context. For our system, we use a YOLO model (version
5s) provided through the AI4EU platform [13], which was trained
from a general data set [9]. Hence, such a solution can be deployed
and work without expensive training of the models. YOLO can
work on different image sizes, we applied it to 384 × 640 pixels.

The diagrams in Fig. 2 show the results of the person counting
in our data set. The upper graph shows the counted persons over a
period of two weeks, the lower graph within a single day.

4 VISUAL ATTENTION MODELS
As outlined in the introduction, wireless devices offer more flexi-
bility during deployment and lower installation costs, so that one
could provide more fine-grained data through more monitoring
points in the skiing area. However, they come with the challenge of
resource constraints especially related to transmission [6]. Though
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Figure 2: Person counts over two weeks (top) and within a
day (bottom) extracted from the YOLO image detection

Figure 3: Learned visual attentionmodel shown as a heatmap
over the background scene

there are advances in embedded machine learning (see Sect. 2), ca-
pabilities are still limited when comparing with the state-of-the-art
YOLO models. We therefore execute the actual person detection
on a server, and the objective is to reduce the transmission of data.
For that, we here want to focus on the selection of image parts at
the application level. (Approaches for data compression or change
detection can come in addition to that, but are out of scope here.)

For the detection and counting of persons, sending the entire
image is in most cases not necessary. In Fig. 1, for example, it is
unlikely to detect skiers in the sky or in areas covered by trees. The
idea is hence to let the sensor devices learn which parts of the image
are significant for person counting in the form of a visual attention
model 𝑉 (see, e.g., [3]), and use that knowledge to only send those
parts of an image when resources are scarce. We therefore divide
an image into 𝑁 parts, referred to as tiles, illustrated in Fig. 3. The
figure indicates through coloring the relative number of persons
detected within each tile over time. As one can expect, tiles that
cover the skiing tracks are more populated and hence more relevant
for person counting than others. Figure 4 shows the relevance of the
individual tiles for all of the cameras, based on the entire data set of
80 days. It is visible that distributions are specific to each camera,
confirming that such models should be learned individually.

The system works as illustrated in Fig. 5. Images taken by the
cameras are tiled, and the sensor devices decide based on a policy

Figure 4: Camera views along with their visual attention
model over the entire range of images captured

(explained in Sect. 4.2) how many and which of the tiles to send.
Selected tiles are transmitted to the server, where they are combined
into a complete image. For the missing parts of an image, the server
simply selects a background image that was transmitted earlier. The
server runs the object detection on the reconstructed image. The
output is used for the person counting. In addition, the bounding
boxes of the detection are used by the server to learn the visual
attention models that are then transmitted to the sensor devices.

4.1 Learning the Visual Attention Models
The visual attention models in Fig. 4 were created from the entire
data set as an illustration. In real deployments, the attention models
must be learned online on the server, that means, while the sys-
tem is running, from the incoming images, starting without prior
information.

The attention model for a camera 𝑐 is initialized with 𝑉 𝑐 [𝑡] ←
0 ∀ 𝑡 , meaning all tiles 𝑡 are considered equally relevant.
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Figure 5: Architecture of the sensor device with camera and
the cloud computing platform. Portions of images are sent
based on the visual attention model

Algorithm 1: Updating the Visual Attention Model 𝑉
Data: bounding boxes with detections, current visual

attention model 𝑉 𝑐

𝑝 [𝑡] ← 0 for all tiles t
forall bounding boxes 𝑏 do

forall tiles 𝑡 do
if b.covers(t) and b.confidence > 0.5 then

𝑝 [𝑡] ← 𝑝 [𝑡] + 1
end

end
end
for tiles 𝑡 do

𝑉 [𝑡] ← 𝛼 · 𝑝 [𝑡] + (1 − 𝛼) ·𝑉 [𝑡]
end

Algorithm 1 describes how to update the visual attention models
over time. It takes a set of bounding boxes from the object detection
as input, which can either come from a single image or a batch of
images. The algorithm can hence run for each image received or
for several images, for instance all received within one day. The
algorithm uses a temporary variable 𝑝 that counts the number
of times any of the tiles 𝑡 is covered by a bounding box. Once 𝑝
registered all bounding boxes for all tiles, the attention model 𝑉
is updated. Here we introduce a discount factor 𝛼 , so that older
observations weight less than more recent ones, similar to the
effect of an exponentially weighted moving average (EWMA). This
factor enables constant learning. Without 𝛼 , values in 𝑉 would
monotonously increase, and newly detected persons would have
less and less influence on the attention model. The model would
not be able to adapt to changes in the environment anymore. Like
with an EWMA, values for 𝛼 can be estimated through the range of
values to effectively take into account by 𝛼 = 2/(range+ 1). For our
experiment, we have chosen 30 days as appropriate time window,
meaning that the attention map is mainly based on the number
of persons within the last 30 days. With 144 images each day, this
corresponds to 𝛼 = 2/(144 · 30 + 1) ≈ 0.463 × 10−3.

Algorithm 2: Policy 𝑃 for tile selection
Data: visual attention model 𝑉 𝑐 , 𝜖 , transmission level 𝑙
with probability 𝜖 :

sample n tiles with uniform weights
or with probability 1 − 𝜖 :

sample n tiles weighted by 𝑉

4.2 Tile Selection Policy
The first question a policy has to answer is how many tiles to trans-
mit, which has a direct influence on the resources used. A detailed
cost analysis depends on the specific hardware and is out of scope
for this paper; we proceed with the simplified assumption that fewer
tiles mean fewer resources spent on transmission. To study the
principles of the approach, we consider four constant transmission
levels 𝑙 ∈ {80%, 60%, 40%, 20%}, which for N=64 tiles correspond to
the transmission of only 𝑛 = 51, 38, 26, or 13 tiles, respectively.

We approach the problem of which tiles to select as a multi-
armed bandit (see, e.g., [16]), where each action corresponds to the
different subsets of tiles that can be transmitted. The problem is
that the visual attention models are learned online, and only from
the tiles we transmit. The attention model is hence changing over
time, since we gradually learn more, and due to possible changes in
the environment. If we only select the tiles that are marked as most
interesting by the attention model, (we exploit its knowledge) we
fail to explore other tiles and may not learn the true distribution of
persons in the image. For that, Algorithm 2 lists an epsilon-based
approach with a tradeoff between exploitation and exploration:

• If the policy selects to exploit (with probability 1 − 𝜖), it
selects tiles randomly but weighted by the probability distri-
bution of the visual attention model.
• If the policy selects to explore (with probability 𝜖), the policy
selects tiles randomly but without considering the visual
attention model, i.e., according to a uniform distribution.

We use an epsilon-decreasing strategy in which a device gradu-
ally reduces 𝜖 , that means, explores more at the start and increases
exploitation over time. A policy 𝑃𝑐

𝑙
for camera 𝑐 selects tiles accord-

ing to transmission level 𝑙 and the visual attention model 𝑉 𝑐
𝑙
.

5 EVALUATION
To evaluate our approach, we simulated the operation of the system
using the different policies 𝑃𝑐

𝑙
for each camera 𝑐 and transmission

level 𝑙 , as if sensors would have been deployed, i.e., starting with
zero knowledge and then simulating the operation on the entire set
of images over 90 days. This is resource-intensive, since the YOLO
object detection has to run on each instance of the reduced images
anew, as each run may select different subsets of tiles. We selected
𝑁 = 64 tiles and 𝛼 corresponding to a time range of 30 days. The
devices explore and exploit equally from the first day (𝜖 = 0.5) and
gradually decrease exploration to 20% (𝜖 = 0.2) after 3 months. As
ground truth, we define a policy 𝑃𝑐∗ that transmits all tiles of an
image.
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Figure 6: Divergence between attention models 𝑉 𝑐
𝑙
and the

ground truth 𝑉 𝑐
∗ over time

5.1 Convergence of Visual Attention Models
The attention models 𝑉 𝑐

𝑙
are computed from the images that were

transmitted with the reduced levels 𝑙 , and we want to investigate
how the models diverge from the true models 𝑉 𝑐

∗ that would rep-
resent the attention from images where all tiles are transmitted.
Since the attention models are distributions over the tiles, we use
the Jensen-Shannon distance metric which measures the similarity
between two probability distributions 𝑃 and 𝑄 :

JSD(𝑃 ∥ 𝑄) = 1
2
𝐷 (𝑃 ∥ 𝑀) + 1

2
𝐷 (𝑄 ∥ 𝑀),

where 𝑀 =
1
2
(𝑃 +𝑄) and 𝐷 (𝑋 ∥ 𝑌 ) =

∑︁
𝑋 log

(
𝑋

𝑌

) (1)

Values close to 1 indicate a high divergence, and values close to 0
that distributions are similar. Fig. 6 shows the divergence of the
attention distribution learned with the reduced transmission levels
when compared to the true distribution learned from the complete
images. In general, we observe that the lower the transmission level,
the longer it takes for the attention models to converge. We ob-
serve sporadic divergence, especially for lower transmission levels
at locations Jervskogen 1, Jervskogen 2 and Nilsbyen 2. A manual
inspection revealed ski competitions in the corresponding images,
which imply a significant change in the placement and number of
persons. After such events, the attention models converge again. In
Nilsbyen 2, the irregular raise is also amplified because of the wide
coverage of persons at that area.

5.2 Distribution and Causes of Errors
We now analyze the errors that occur when we only transmit
parts of the tiles with policies 𝑃𝑐

𝑙
utilizing the visual attention

models 𝑉 𝑐
𝑙
. For that, we compare for each image the number of

persons detected using the policy with the ground truth. The error

𝑙 = 80% 𝑙 = 60% 𝑙 = 40% 𝑙 = 20%

C1: Correct cases 96.4% 94.7% 93.1% 90.2%
C2: Cases w. undet. persons 2.2% 3.6% 5.3% 8.6%
C3: Cases w. false positives 1.3% 1.5% 1.5% 1.0%
Table 1: Frequency of the different result class for each trans-
mitted image, all cameras combined

𝑒𝑐
𝑙,𝑖

for an image 𝑖 is then the difference between ground truth and
the person count with the policy and reduced transmission, i.e.,
𝑒𝑐
𝑙,𝑖

= detected (𝑃𝑐∗ , 𝑖) − detected (𝑃𝑐
𝑙
, 𝑖). Fig. 7 shows the histogram

of the errors for all transmission levels. We distinguish three cases,
which are also detailed in Table 1.

C1 Imageswhere the number of detected personswith the policy
matches the ground truth.

This class marks cases where the tiling did not introduce any error,
and Table 1 reveals that this is the vast majority of cases. They are
represented in the histograms in Fig. 7 as the hatched bar at value
0. (It is off the charts due to the scale, which we selected so that the
error classes are better visible.) In contrast, errors happen in the
following two classes:

C2 Images where the reduced transmission leads to undetected
persons. This results in a positive error, and is hence repre-
sented by the bars to the right of the hatched bar in Fig. 7.
Not unexpected, this type of error is the most frequent one,
since tiles not transmitted may contain persons that cannot
be detected.

C3 Images where the reduced transmission leads to more per-
sons detected than actually present, so-called false positives.
These result in a negative error, and are shown to the left
of the hatched bar. Fig. 8 illustrates such an error where the
legs of a barrier were interpreted as a person when it was
adjacent to a tile not transmitted.

There may be cases where both false positives and undetected per-
sons happen within the same image, so that errors cancel each other
out. There may also be errors in the ground truth, that means, the
YOLO algorithm does not work correctly in the original image. This,
however, is then an inherent challenge with the image recognition
and not a problem of our tiling policy. From a random examination,
however, we conclude that these cases do not happen often.

5.3 Value of the Attention Models
To determine to which degree selecting the tiles according to the
visual attention model helps to prevent missed counts, we compare
our policies 𝑃𝑐

𝑙
using the visual attention models with random

policies 𝑅𝑙 . These policies 𝑅𝑙 use the same transmission levels 𝑙 ,
but sample always randomly, without the knowledge of the visual
attention model.

Table 2 shows the detection for all cameras, alongside the num-
ber of undetected persons for each transmission level. Camera
Jervskogen 1, for instance, has a total of 4202 detected persons us-
ing the ground truth over the entire period of 90 days. With an
80%-transmission policy, the random policy missed 1434 persons,
while the policy using the visual attention model only missed 385
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𝑙 = 80% 𝑙 = 60% 𝑙 = 40% 𝑙 = 20%
Camera True Count Policy Undetected % Undetected % Undetected % Undetected %

Jervskogen 1 4202 Random 𝑅𝑙 1434 34.1% 2272 54.1% 3007 71.6% 3707 88.2%

Learned 𝑃𝑙 385 9.2% 583 13.9% 1107 26.3% 2204 52.5%

Difference 1049 73.2% 1689 74.3% 1900 63.2% 1503 40.5%

Jervskogen 2 3077 Random 𝑅𝑙 793 25.8% 1418 46.1% 1940 63.0% 2576 83.7%

Learned 𝑃𝑙 263 8.5% 554 18.0% 780 25.3% 1351 43.9%

Difference 530 66.8% 864 60.9% 1160 59.8% 1125 47.6%

Nilsbyen 2 3264 Random 𝑅𝑙 851 26.0% 1512 46.3% 2077 63.6% 2684 82.2%

Learned 𝑃𝑙 331 10.1% 688 21.1% 1052 32.2% 1860 57%

Difference 520 61.1% 824 54.5% 1025 49.4% 824 30.7%

Nilsbyen 3 6770 Random 𝑅𝑙 1604 23.7% 3024 44.7% 4167 61.6% 5535 81.8%

Learned 𝑃𝑙 661 9.8% 1305 19.3% 2566 38% 4228 62.5%

Difference 943 58.8% 1719 56.8% 1601 38.4% 1307 23.6%

Skistua 3753 Random 𝑅𝑙 984 26.2% 1651 44% 2461 65.6% 3230 86.1%

Learned 𝑃𝑙 308 8.2% 631 16.8% 820 21.8% 1731 46.1%

Difference 676 68.7% 1020 61.8% 1641 66.7% 1499 46.4%

Table 2: Residual errors in terms of undetected persons for each camera and transmission level 𝑙

Figure 7: Distribution of errors for all transmission levels.
The hatched bar depicts the correct estimation (zero error).

persons. This means the visual attention model prevented 73.2%
of the errors that the random policy caused. Averaging over all
cameras and transmission levels, the reduction in errors is 55%.

Fig. 9 visualizes the number of missed persons for each camera
and each transmission level, and compares the policies using the
visual attention models with the random policies. The vertical axis
shows the percentage of persons missed relative to the total number.
The plot shows clearly that for all cameras and transmission levels,
the number of missed detections is greatly reduced for the policies
utilizing the visual attention models.

Figure 8: The full image (left) does not trigger a person detec-
tion, but tiling and combination with the background cause
the fence to be interpreted as a person.

6 CONCLUSION AND OUTLOOK
We studied how visual attention models can be learned and ex-
ploited for the use case of person detection and counting in a skiing
area. The attention models identify the most rewarding parts of an
image and gain this knowledge over time, starting without prior
knowledge. We have shown that the models can also be learned
under resource constraints, and that their utilization can consider-
ably reduce the number of undetected persons when transmissions
need to be reduced.

In this study, we only considered policies with fixed transmission
levels and an epsilon-decreasing strategy for exploration to estab-
lish the principle of the visual attention models. More advanced
policies and attention models could take many more signals into
account. Visual attention models could depend on time and other
contextual information, and energy planners, which were out of
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Figure 9: Percentages of undetected persons for each camera,
using the visual attention models and for random policies

the scope in this paper, could determine the optimal trade-off be-
tween utilization and exploration for future exploitation taking the
harvested energy and how it varies over time into account.

This use case fits into the larger picture of self-adaptive, cognitive
IoT applications, in which low-power IoT devices autonomously
adapt according to the environment to manage on-board and trans-
mission resources efficiently. The devices should observe, learn and
then adapt according to changes.
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