
Future Generation Computer Systems 142 (2023) 4–13

n
g
l
p
s
a
S
d
s
p
a
r
t
i

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Towards containerized, reuse-oriented AI deployment platforms for
cognitive IoT applications
Tiago Veiga a, Hafiz Areeb Asad b, Frank Alexander Kraemer b,∗, Kerstin Bach a

a Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
b Department of Information Security and Communication Technology, Norwegian University of Science and Technology, Trondheim, Norway

a r t i c l e i n f o

Article history:
Received 12 July 2022
Received in revised form 30 October 2022
Accepted 22 December 2022
Available online 24 December 2022

Keywords:
Cognitive IoT
Self-adaptive IoT
Cognitive architecture
Container-based deployment

a b s t r a c t

IoT applications with their resource-constrained sensor devices can benefit from adjusting their
operations to the phenomena they sense and the environments they operate in, leading to the
paradigm of self-adaptive, autonomous, or cognitive IoT. On the other side, current AI deployment
platforms focus on the provision and reuse of machine learning models through containers that can
be wired together to build new applications. The challenge is that composition mechanisms of the AI
platforms, albeit effective due to their simplicity, are in fact too simplistic to support cognitive IoT
applications, in which sensor devices also benefit from the machine learning results. Our objective is
to perform a gap analysis between the requirements of cognitive IoT applications on the one side and
the current functionalities of AI deployment platforms on the other side. In this work, we provide
an overview of the paradigms in AI deployment platforms and the requirements of cognitive IoT
applications. We study a use case for person counting in a skiing area through camera sensors, and how
this use case benefits from letting the IoT sensors have access to operational knowledge in the form of
visual attention models. We describe the implementation of the IoT application using an AI deployment
platform, analyze its shortcomings, and necessary workarounds. From the use case, we identify and
generalize five gaps that limit the usage of deployment platforms: the transparent management of
multiple instances of components, a more seamless integration with IoT devices, explicit definition of
data flow triggers, and the availability of templates for cognitive IoT architectures and reuse below
the top-level.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In a wide range of application domains, there is an increasing
umber of combined Internet-of-Things (IoT) / Artificial Intelli-
ence (AI) applications in which decisions are made by machine
earning models based on the data collected by sensor devices. In
rinciple, such applications can be implemented using a rather
imple architecture, in which the concerns between IoT and AI
re well separated and follow a simple, uni-directional data flow:
ensors measure a phenomenon in the environment and transmit
ata into a database, from which it can be analyzed to support
pecific decisions. In this simple division, functionality that sup-
orts sensor operations regards mainly managing their software
nd communication, to provide them with configurations, secu-
ity or other updates and ensure their proper operation [1]. On
he other hand, the main challenge of the system related to AI
s the correct and efficient deployment of AI models. Here we

∗ Corresponding author.
E-mail address: kraemer@ntnu.no (F.A. Kraemer).
ttps://doi.org/10.1016/j.future.2022.12.029
167-739X/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
see the move towards containerized platforms, in which ready-
made AI models can be instantiated. Virtualized environments in
form of containers allow to provide the correct version of the
software stack for the specific models. This ensures that models
run in the same environment where they were developed, tested,
and validated in. Models and functions contributed by different
containers can then be composed into more comprehensive data
flows through connections between containers.

However, such a strict division between IoT and AI prevents
systems from evolving towards higher efficiency and better per-
formance: IoT sensors can greatly benefit from the ability to rea-
son about their own operation and the environment they operate
in so that they can reuse their constrained resources strategically.
This refers to the concept of self-adaptive [2,3], context-aware, or
cognitive IoT [4,5]. With increasing computational power, sensor
devices can take autonomous decision to improve the system
performance and actively improve their own information about
the environment. For instance, they can better decide when and
how to make measurements or which data to forward, to avoid
spending effort on useless data with little impact on the utility for
a user, also referred to as value-of-information [6]. Such behavior
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2022.12.029
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.12.029&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:kraemer@ntnu.no
https://doi.org/10.1016/j.future.2022.12.029
http://creativecommons.org/licenses/by/4.0/

T. Veiga, H.A. Asad, F.A. Kraemer et al. Future Generation Computer Systems 142 (2023) 4–13

r
o
t
e

o
m
m
a
I
t
m
s
t

e
o
a
m
i
a
w
e
a
s
t
c
a
t
c
H
c
s
i
W
c
r

S
A
r
w
c
n
d
i
a
c
p
a
a
v

2

t
a
b
c
m
m
e
t
m
p
p

equires some form of adaptation. Due to the scale and number
f devices, this adaptation must happen autonomously, and, due
o the heterogeneity of the environments of the devices, also for
ach sensor individually.
The cognitive abilities required for such adaptive behavior are

ften provided through mechanisms that need similar support for
achine learning as the data analysis of domain data. This implies
ore complex architectures that require more fine-grained man-
gement and a deeper integration with AI deployment platforms.
nstead of sensors only delivering data for analysis, they are also
he receivers of insights generated by AI. Such examples are
odels about the environment, models about the phenomena to
ense or about the usage patterns, all allowing the sensor devices
o plan their operations more strategically.

Such a more sophisticated coupling between IoT and AI, how-
ver, goes beyond what the simplistic composition mechanisms
f current AI deployment platforms allow. In this paper we an-
lyze the intersection between architectures for IoT cognitive
odels and container-based composition and deployment used

n AI platforms. We present the requirements of cognitive, self-
daptive IoT applications illustrated by a case study. In particular,
e study a use case where a visual sensor network with cam-
ras is used to estimate the busyness and utilization of a skiing
rea. We formulate an ideal system model for a cognitive IoT
olution following the reference model in [4], which emphasizes
he decomposition into logical components (as opposed to only
ontainers), and the identification of autonomous loops as well
s explicit triggers. We then analyze and discuss how such solu-
ions can be implemented following the simple paradigms for AI
omposition platforms based on containers as much as possible.
ere we experience that the simplicity that lies in the container
omposition paradigm used for AI deployments is a hurdle for
uch an integration, and identify gaps where a straightforward
mplementation of the cognitive IoT principles is not possible.
e therefore also suggest how current AI composition platforms

an be extended to support the need for the more elaborate
equirements of cognitive, self-adaptive IoT applications.

In the following, we provide an overview of related work in
ection 2, and then present the principles of container-based
I solutions in Section 3. After that, we present our case study
elated to person counting in a skiing area in Section 4, for which
e first develop a simple version to illustrate the principles of
ontainer-based deployment platforms. We then motivate the
eed for cognitive IoT applications in general in Section 5, and
escribe a specific version of a cognitive variant of the use case
n Section 6. We model this cognitive version in Section 7 using
reference model as starting point, and by that identify criti-

al requirements for the implementation on a container-based
latform, which we will analyze in Section 8. In this section, we
nalyze the unfulfilled requirements, possible design alternatives
nd necessary workarounds, and propose extensions for future
ersions of such platforms.

. Related work

The design of architectures for IoT networks share many archi-
ectural goals with the development of service-oriented software
rchitectures [7]. Both share the need for efficient communication
etween different components and facilitate the deployment of
omplex networks with simple building blocks. Therefore, the
icroservice approach was introduced to IoT, for instance for
anufacturing systems [8] or different tiers of IoT systems in gen-
ral [9]. Microservices encapsulate specific, self-contained func-
ions as loosely coupled components that communicate through
essage passing. Through the loose coupling, microservices sup-
ort solutions based on virtualization so that the different com-
onents can execute in different environments [10]. However, it
5

does not take into account the possibility that different devices
naturally have variable computational and energy resources.

Cognitive architectures [11], on the other hand, can adapt to
the current conditions in the environment and drive adaptive be-
havior from the system. The core feature is that such architectural
designs allow data to flow arbitrarily and not only unidirection-
ally. Therefore, systems can adapt to what is observed from the
environment and pass updated action plans back to the devices
interacting with the physical world. Several concrete examples
can be found in the literature, such as architectures for healthcare
coaching systems [12], smart grids [13] or the management of
robotic recycling plants [14]. Later, a survey analyzed several
approaches for cognitive models and a general blueprint model
was proposed [4].

IoT forms a three-tiered architecture, consisting of devices,
edge computing resources and cloud computing [15]. In this
setting, cognitive architectures can be subdivided into several
components, with some of its features provided by AI services. In
general, AI services can be added to an IoT network to provide
additional features in the system. For example, the integration
of IoT and AI services for supply chain management [16], the
implementation of Edge–Cloud architectures for AI services over
5G networks [17] or the management of cloud–edge orchestra-
tion [18]. Furthermore, while edge computing can improve the
quality of experience for an IoT application [19], AI can improve
the implementation of secure microservices on the edge [20].
Other approaches distribute the execution of machine learning,
both inference or training, over several tiers of the architecture,
also referred to as Edge-to-Cloud continuum [21]. Some use con-
tainers for the execution of tasks [22,23], others distribute the
computation of neural networks so that the individual layers are
processed in different system tiers [24,25]. However, while these
approaches clearly address the need for integration of AI and IoT,
they focus on the feasibility of the approaches and the handling
of constrained resources, not the composition or aspects of reuse
that is starting to get mature for cloud-based solutions.

The deployment process for AI solutions is complex and, there-
fore, deployment platforms were presented with the goal of au-
tomating the workflow, from solution design to orchestration.
One further step is the creation of community-maintained cat-
alogs, allowing practitioners to test and reuse different compo-
nents for their specific solutions. The Acumos platform [26] offers
such tools, although initially conceived for unidirectional machine
learning pipelines. Later, the AI4EU project launched the AI4EU
platform [27] which extends Acumos to allow, among others,
cyclic topologies.

In this work we aim at bridging the gap between these sub-
topics. In particular, we notice a lack of analysis of the deploy-
ment process of cognitive architectures for IoT applications which
will benefit it generalization and easier deployment for different
scenarios. Simultaneously, AI deployment platforms were not
developed with the specific requirements of IoT applications, and
cognitive models in particular, in mind.

3. Container-based AI deployment platforms

In this section, we provide an overview of the current status
of container-based AI platforms and especially the principles they
employ to make the deployment of AI pipelines less complex.
Without specific support, deploying AI solutions such as machine
learning models can be a difficult process, with challenges identi-
fied at every step of the deployment [28]. Deployment platforms
make AI models easier deployable in various practical settings
by allowing to create new solutions by wiring together reusable,
off-the-shelf components. In this way, mature and tested models
and processes are available for reuse and can be combined and
adapted to fit into new settings and applications.

T. Veiga, H.A. Asad, F.A. Kraemer et al. Future Generation Computer Systems 142 (2023) 4–13
The AI4EU Experiments Platform [27], which is part of an EU
project [29] and the basis for our case study, is built around two
main components: the marketplace and the design studio. The
marketplace is a repository for AI components and other support
components, ranging from data sources to user interfaces. The
design studio is a visual editor allowing users to connect differ-
ent components from the marketplace catalog and create new
solutions.

Inspired by development in software engineering, the basis
for offering reusable components are containers. A container is
a virtualized environment that runs software instances in an
isolated environment from its physical host server. This allows
developers to encapsulate whatever algorithms and methods are
served by a given micro-service as a self-contained environ-
ment, which means freedom to use any version of the base
operating system, system packages, or coding framework. Thus,
using containers avoids compatibility issues in case of system
upgrades or combining components that require different (and
potentially incompatible) software stacks. Models can run in the
exact same software stack they were originally developed, tested,
and validated for.

In the AI4EU platform, a component is composed of a pointer
to a Docker container available in a public or private library like
for instance Docker Hub [30]. The respective micro-services and
data interfaces are defined in the Protocol Buffers format [31].

The conceptual simplicity of connecting components, which
sometimes only consist of linear pipelines, allows for simple
graphical editing tools to design the data flows between compo-
nents. This makes the deployment process easier for the system
designers, as these editing tools are used to create solutions with
limited knowledge about the technical details of each module.
Based on the definitions of the components, the graphical editor
allows the user to connect interfaces between components. The
editor visually differentiates between input and output interfaces
and generates similar symbols for similar interfaces such that the
user can identify them. In the AI4EU platform, the orchestration
for the interactions of the containers is automatically generated
based on the data flow between the containers according to the
wiring defined by the user in the design studio.

The modularity of these solution increases the reusability of
architectures. The whole or part of the pipeline can be reused in
different scenarios, for instance, experimenting with a pipeline of
different AI modules or databases while maintaining the overall
structure design. In case a solution cannot be realized by wiring
existing components, users can also create own components with
arbitrary logic. Alternatively, the system designer can define the
orchestration links programmatically or implement a custom or-
chestration module, both alternatives that require considerable
programming expertise.

To sum up, AI deployment platforms here represented with
the AI4EU platform allow to create AI solutions by offering com-
ponents as self-contained environments through containers. These
components can be combined using graphical editors.

4. Use case: Person counting in a skiing area

Our case study is a system that estimates the business of a
skiing area. It processes camera images and counts the number of
persons as basis for the estimation. For this simple initial version,
the design within the AI4EU editor is straightforward, with only
a few components and connectors. Fig. 1 shows the first basic
workflow of the system for a single camera instance. The pipeline
begins with a data source component, which fetches the images
published by the camera. Then, an image recognition component
follows. This component is reused from the publicly available
components in the AI4EU platform catalog. It encapsulates an
6

instance of an off-the-shelf, reusable module for object detection
that follows the You only look once approach (YOLO, [32]), which
allows for the detection of several different objects in various
positions in a single inference step. The model’s output is a list
of bounding boxes, illustrated in Fig. 2. The bounding boxes are
annotated with the type of object detected and a confidence level.
Finally, the image and list of detections are passed to a dashboard
component, which implements a web user interface to allow
real-time visualization.

5. Towards self-adaptive, cognitive IoT

Before we transform our simple use case from above into
a cognitive version, we first motivate why we need cognitive
applications in IoT at all. To make the deployment of IoT devices
cheaper or feasible at all, it is crucial that they are wireless,
use a wireless protocol for communication, and are powered
by batteries or preferably by energy harvesting to reduce the
need for manual maintenance. It is also desirable to keep devices
as compact as possible to reduce costs and make them less
obtrusive, reducing the size of harvesters such as solar panels
and energy buffers. Energy is a scarce resource that should be
used strategically [33]. Other relevant constraints are the trans-
mission over wireless channels, which may have restrictions on
bandwidth.

In IoT, various techniques are employed to handle resources
economically, such as low-power electronics, efficient commu-
nication protocols [34], new types of energy buffers [35], and
energy harvesting [36]. Another class of approaches tries to maxi-
mize the utility of the system to the user by minimizing the effort
spent on data that is not significant. These can be summarized by
the concept of Value of information [6]. For the control software
in devices, this means selecting more carefully when and where
to make measurements, and which data to process, transmit or
store.

So, in general, the idea is to only use resources on relevant
data for the system’s utility. Such knowledge about the value of
information is often highly specific to the application goals, the
phenomena to sense, the sensor’s environment, and the specific
construction of the device. The knowledge may hence vary for
each individual sensor device, and can vary over time as the
environment and the sensed phenomena can be non-stationary.
In general, this means that IoT sensors themselves benefit from
learning processes so that they can more optimally control their
operation and make tradeoffs between, for instance, energy con-
sumption and utility to the user to optimize overall operation.
They may also be able to degrade their level of service grace-
fully, or manage to maintain a minimum service level [37] when
resources get scarce.

Many of the reasoning techniques for these systems involve
machine learning [4]. For the connection between IoT and AI
this means that the IoT devices of a system are not only used
as a source of data that is analyzed and acted upon through AI,
but that AI solutions also provide feedback to the IoT devices
to learn about their own properties and the environment they
are deployed in, with the aim to optimally control their own
operation. Systems hence evolve from a uni-directional, simplistic
pipeline into more general cognitive models with learning and
reasoning processes, and the ability to adapt.

We focus in the following on the effect of such a paradigm
shift in IoT on system development with the starting point of the
containerized platform that support current AI solutions, and ask
how they can be extended so that they fulfill the requirements of
cognitive IoT.

T. Veiga, H.A. Asad, F.A. Kraemer et al. Future Generation Computer Systems 142 (2023) 4–13
Fig. 1. Screenshot of the solution designed in the AI4EU platform for a unidirectional pipeline for the simplified use case without any self-adaptation or feedback to
the sensor devices.
m
p
o

F
t
t
T
m

m
d
p
o

f
T

Fig. 2. Two persons detected by the YOLO image recognition model with
corresponding confidence.

Fig. 3. Camera views together with their visual attention models, calculated over
the entire range of images captured. The darker certain cells in the attention
model are, the more often persons have appeared and therefore should be
prioritized during transmission.
 s

7

Fig. 4. Snapshots of the visual attention model of one camera over time (day
to day). This shows how sensor devices can acquire knowledge over time that
they can exploit to reduce image transmissions.

6. Use case: Self-adaptive, cognitive version

To enable the sensors to better adapt to constrained resources,
we will extend the system into a cognitive, self-adaptive IoT sys-
tem in which sensors can benefit from the system’s feedback to
adjust their operation. Hence, AI functions integrate also directly
with the operation of the system. For visual sensing networks,
there exists a variety of techniques to make operations more
efficient. In the following, we focus on a concept referred to as
visual attention [38]. When revisiting Fig. 2, we see several parts
in the system where it is unlikely to observe persons, like in the
sky. When transmitting an image in constrained situations, sensor
devices could hence drop the transmission of those parts of an
image that are less likely to show persons. Compared to always
sending the complete image and then running out of energy, this
solution would let the system maintain its utility and still count
the number of persons. We therefore partition an image into a set
of N = 64 tiles. With V [t], t ∈ {1..N} we store a visual attention
odel. The higher the value for each tile, the more likely it is that
ersons appear in this part of the image. The logic consists then
f two parts:

• On the server, where the object detection runs using the
YOLO model just as before, we also create a visual attention
model for each camera. This happens by analyzing the posi-
tion of the bounding boxes delivered by the object detection
and periodically updating the attention model. The server
regularly transmits the attention model to the sensor device.

• On the sensor device, we separate the image into tiles and
select which tiles to transmit to the server using a selection
policy. This policy determines the number of tiles to send
using a planning algorithm depending on its current energy
budget and then transmits only those tiles deemed valuable
by the attention model.

or this to work, the server receives the transmitted tiles, stitches
hem together with a background image received earlier, and
hen performs the object detection on these reduced tile sets.
he details of the algorithms for the computation of the attention
odels and the policies are published in [39].
Fig. 3 shows five cameras and their corresponding attention

odels as heatmaps to the right. The cells in the heatmap with
arker coloring correspond to those areas where the detection of
ersons is more likely. Fig. 4 shows the visual attention map of
ne camera as it develops over time, from day to day.
To evaluate our approach, we simulated five different policies

or each device, which vary in the number of tiles transmitted.
he fewer tiles transmitted, the lower the usage of energy re-

ources. Fig. 5 shows the results of different simulation runs. The

T. Veiga, H.A. Asad, F.A. Kraemer et al. Future Generation Computer Systems 142 (2023) 4–13

t
l
f
a
r
a
a
5
t
b
p

7

v
s
b
a
c
c
t
W
t
T
f
a
e
t
r
u

l
t

Fig. 5. Percentages of missed person detections (vertical axis) for each camera
for the five tile percentage policies (horizontal axis). Results show the visual
attention models (solid lines) and random policies (dashed lines). On average,
using the attention models reduces the number of undetected persons by 55%.

horizontal axis shows different percentages of tiles sent, starting
with 100% (all tiles) to only 20% of the tiles. The vertical axis
shows the percentage of persons that remained undetected. Since
we took the number of detected persons in the complete images
as ground truth, the error and hence the number of undetected
persons is 0 for the policy transmitting 100% of the tiles. The solid
lines represent the policies that make use of the visual attention
models. We see that the percentages of undetected persons rise
as we transmit fewer tiles, which is not unexpected.

When comparing the different policies using the visual atten-
ion models (solid lines) compared to random policies (dashed
ines), we see that the ones using visual attention models per-
orm better and benefit from the cognitive architecture and self-
daptive model. The number of undetected persons using the
andom tile selection is much higher. When we average over
ll cameras and transmission levels, we observe that the visual
ttention models reduce the number of undetected persons by
5% [39]. The exact tradeoff between energy usage and accuracy
hrough the selection of transmission levels is not in focus here,
ut the error reduction compared to random policies shows the
otential of a cognitive, self-adaptive approach to IoT.

. Cognitive IoT model

We will now develop the implementation of the cognitive
ersion of the use case as motivated and outlined above. It will
erve as a source for the requirements we explore that should
e supported by containerized AI deployment platforms. The self-
daptive, cognitive version of the application will turn out more
omplex than the basic version from Section 4 and Fig. 1, as it
ontains more data flows, includes feedback loops, and also needs
o learn, maintain and distribute the visual attention models.
e approach its implementation following the general cogni-

ive model for IoT applications introduced by Braten et al. [4].
his model generalizes patterns for adaptive behavior commonly
ound in different architectures surveyed in the literature on
utonomous computing and self-adaptive systems. Since the ref-
rence architecture was extracted from case studies in the litera-
ure, it applies to a wide range of systems, which means that the
equirements we formulate based on the cognitive version of our
se case should also generalize well for other applications.
The main elements of the reference models are components,

oops, and triggers. Components determine the locus of compu-

ation and encapsulation and are relevant for organization and

8

potential for reuse, the loops organize the data flow through
the system, and the triggers determine when data flows are
dispatched and computation happens. Fig. 6 illustrates the design
of this cognitive architecture, which we will describe in the
following.

7.1. Component structure

Components are classified according to their function in the
cognitive model. They can encapsulate declarative (DK) or pro-
cedural knowledge (PK), the acquisition or measurement of data
and hence responsible for perception (P), execute actions (A), or
be part of the adaptation process (AP), following the taxonomy
of autonomous systems.

The sensor devices (to the left in Fig. 6) are structured by
two components. Perceive is responsible for acquiring images and
their subsequent processing. Execute is responsible to interpret
the visual attention model and decide when, how many and
which tiles to send, as described in Section 6.

To the right are the device managers usually executed on a
cloud platform. Here, each sensor device instance has its own
instance of a manager. The (partial) images sent by the device
are stored as part of the device-specific knowledge component. A
monitor device examines the incoming data and dispatches it to
the learning process for the visual attention models. The image
recognition task is implemented within this component. These
models are handed over to the analytical component that predicts
device operation and the subsequent planning component. Cur-
rently, the visual attention models are the only information pro-
vided to the devices. More advanced solutions applying planning
to optimize for the available energy can improve the performance
and autonomy of IoT devices further. Component Learn observes
the learning process of the visual attention maps.

7.2. Loops for autonomous behavior, learning and adaptation

The reference model identifies three different types of loops
that describe data flows with different purposes to support (1)
autonomous behavior, (2) learning, and (3) adaptation.

• Autonomic loops are the control mechanism that allow
devices, to some degree, to take autonomous decisions in-
dependent of external information. In Fig. 6 this is loop L1.
This loop is contained within the device and consists of the
data flow between the Perceive and Execute components.
This loose coupling between the device manager and the
device allows the device some degree of autonomy, and
it can operate even if the device manager fails to send a
refreshed visual attention model.

• Learning loops control the update of the system’s knowl-
edge about the environment and the state of its devices.
In Fig. 6 this is loop L2. It controls the learning process
for the visual attention model and is contained within the
server. The object detection container acts as a monitor
that observes the sensed event (a reconstructed image) and
returns new knowledge. Other learning processes can occur
in parallel like, for example, the temporal model of presence
of persons for each hour of each week day.

• Adaptive loops control reasoning mechanisms and ensure
that the devices respond well to changes in the environment
or, in other words, that the plans followed by the auto-
nomic loop adapt to the observations perceived from the
environment. In our application in Fig. 6, L3 is an adaptive
loop that controls the transfer of an updated visual attention
model to the device. It is triggered by a sensing event on

the device, which is communicated to the manager which,

T. Veiga, H.A. Asad, F.A. Kraemer et al. Future Generation Computer Systems 142 (2023) 4–13
Fig. 6. Diagram with the proposed cognitive architecture for the camera deployment use case, following the reference architecture in [4]. Each device instance
(left) is represented by its own device manager instance (right). The data flows between the logical components are organized by three main loops for autonomous
behavior, learning and adaptation.
in turn, can decide to transfer an updated model after the
learning process back to the device. This corresponds to an
update of the action plan for the device and is an adaptation
of the device operation.

Each loop follows the data flow interaction between different
sub-parts of the network. In particular, L1 is contained within
the device, L2 is within the cloud platform, and L3 involves
communication between the device and the device manager in
the cloud.

7.3. Triggers

Tasks such as learning are often resource-intensive and should
only be dispatched when necessary. The best practices in [4],
therefore, recommend making triggers explicit. We identify two
critical triggers in the architecture:

• T1 triggers the learning process. When sufficient new data is
available, the learning component triggers the exchange of
this information to the knowledge component to update the
visual attention model. Here the formulation of the trigger
influences the tradeoff between computational costs and the
currentness of the visual attention model. Models can be
updated with each received image, or it may be sufficient
to only update the attention model once a day.

• T2 triggers the process of transmitting an updated visual
attention model to the device. It can happen either at every
update or when the planning component detects that it is
significantly different from the previous version.

We should note that the original reference model in [4], in
addition to the device managers, also contains elements for adap-
tive behavior at the system level for concerns relevant for all
devices. We left these out for brevity as they do not change the
fundamental requirements we want to discuss here.

8. Container-based implementation

We now proceed with the implementation of the cognitive,
self-adaptive model for the IoT application of Fig. 6. Of course,
we want to realize as many of the benefits that come with the
principles of reuse-oriented assembly of virtualized containers
(described in Section 3), so that more complex IoT applications
can be easily built and deployed. This means in particular cre-
ating data pipelines among several containers, reusing existing
containers whenever possible, and facilitating the orchestration
of the system.

However, we experienced that the current platforms lack fea-
tures which prevents a straightforward deployment of our mod-

ular cognitive architecture. In this section, we discuss the main

9

Fig. 7. Container structure for the deployed solution. Sensor devices (left) are
not part of the deployment platform. Each sensor is represented by its own
device manager container. Containers for the YOLO object detection and database
are directly reused from the AI4EU catalog.

gaps and missing features, analyze our workarounds and propose
improvements for the next generation of deployment platforms.

Fig. 7 shows the container structure of the solution built for
the deployment platform. To the left are the sensor devices,
which are not part of the containerized platform. The logical
components within the device manager of Fig. 6 are mapped
into corresponding manager containers. These manager contain-
ers act as orchestrators that connect the external devices with
the other modules in the cloud network. We implemented one
container instance per device instance. Three more containers
provide additional functionality:

• YOLO Object Detection processes the images and finds the
bounding boxes of persons. Like in the simplified version of
the system in Fig. 1, this container was directly reused from
the AI4EU catalog.

• Database implements and manages a MongoDB database to
allow the system to look for previous information and an
external user to inspect the database if necessary. Also this
component could be directly reused.

• Dashboard exposes a web interface with information about
the current status of the system for an external user, which
include the current status of the detection system with
a print of the current image, with detected objects high-
lighted, and the current attention map learnt by the system.

As indicated above, a direct deployment of this solution on the
platform is impossible as it lacks support for some features re-
quired by the model in Fig. 6. We instead created and configured

T. Veiga, H.A. Asad, F.A. Kraemer et al. Future Generation Computer Systems 142 (2023) 4–13

o
k
d
t
p

Table 1
Overview of the requirements for a cognitive version of the AI platform, together with design alternatives (if available) and design choices.
Requirements Design alternatives Design choices Sect.

R1: Container Instance Management
We need to manage multiple instances of a
component, for instance to offer one
manager component instance per device.

A1.1: One container instance per device We selected A1.1 as workaround, since A1.2 and A1.3
are not supported. For future versions of the
platform, A1.3 would offer the best solution for
developers.

8.1A1.2: A single container for all device
instances
A1.3: A clustered solution.

R2: Closer Integration with Devices
External devices should be represented in
the graphical editor.

A2.1: Contain device nodes in the visual
editor.

We selected A2.2 as workaround with a special
component as interface to the devices. 8.2

A2.2: Add generic interfaces for incoming
data from devices.

R3: Explicit and Expressive Triggers
We need to define triggers explicitly. –

As a workaround, we implemented triggers as part of
the manually written logic, not visible in the
graphical editor.

8.3

R4: Reuse Below the Top-Level
Reuse of containers also at the sub-level,
not only top-level. –

As a workaround, we placed the container for image
detection at the top level, and routed communication
from the device managers to it, instead of including
it inside the device manager.

8.4

R5: Architecture Templates
It should be possible to reuse also templates
of architectures.

–
As workaround, we constructed our model from
scratch, without reusing any template.

8.5
i

an orchestration solution through manual programming, circum-
venting some of the constraints of the deployment platforms and
its visual editor. The main unfulfilled requirements we identified
are:

R1 The platform currently only offers single instances of com-
ponents and does not offer a mechanism for the manage-
ment of multiple instances. This is necessary for device
managers, for instance, as they ideally exist as one instance
per sensor device instance. (Section 8.1)

R2 The visual editor does not have explicit mechanisms to
include external devices, but only covers the deployment in
the cloud network. Instead, it should offer the possibility to
also include a representation of the devices. (Section 8.2)

R3 It is not possible to define triggers, as identified in the
cognitive model, inside the editor. Instead, these should
be modeling elements within the editor, as they represent
critical concepts for the execution. (Section 8.3)

R4 The reuse of containers is available at the top level. This
considerably limits the flexibility for structuring solutions
and hampers reuse. In addition, it should be possible to
edit hierarchical designs and introduce also reuse for sub-
components. (Section 8.4)

R5 It should be possible to also allow the reuse of architecture
templates. (Section 8.5)

Table 1 provides an overview of the requirements and the poten-
tial design alternatives. Since these requirements are not specific
to our use case but are relevant for also other cognitive IoT
applications, we discuss in the following design options, how
we solved the requirements by workarounds, and how the de-
ployment platforms can support these requirements in future
versions.

8.1. R1: Container instance management

Managing many devices in a single model is a central aspect
f cognitive architectures. In particular, there is device-specific
nowledge that needs to be maintained, updated, and pushed
own to the respective device. A manager component should
herefore represent each physical device [4]. It should also be
ossible to create and destroy such instances on-demand, as
 c

10
new physical sensor devices can join or leave the system during
runtime.

In principle, there are three alternatives for the implemen-
tation of device manager instances: (A1.1) one container per
device instance; (A1.2) a single container handling all device
instances; or (A1.3) a clustered solution with several containers,
each handling a cluster of devices.

We used the first option as a workaround and created one
container instance per physical device, since this resulted with
the given restrictions in the best overview for the model. For that,
we configured access ports to each container instance to ensure
that each device connects to its respective manager. For our
prototypical system with few cameras, this is a viable solution,
but for systems with a high number of device instances this may
require too many resources. Containers are meant to provide
independent execution environments. Providing one execution
environment for each sensor device instance is not necessary
since they will probably require the same software stack anyway.
Hence, options (A1.2) and (A1.3) are more suitable. In these
cases, the data flows between containers need to carry also the
device ID so that the containers implementing device managers
for several device instances can tell them apart.

Ideally, the management of several instances should be trans-
parent to the developer, as the required logic adds a lot of
complexity without adding any application-specific value. Such
a transparent management of device manager instances could
also be an opportunity to perform load balancing; the deploy-
ment platform could not only create the instances when they are
required, but also decide where to execute them.

8.2. R2: Closer integration with devices

Another core aspect of IoT architectures is the seamless inte-
gration of data exchanged between sensor devices and managing
components. Therefore, it is desirable that the graphical platform
editor offers functionalities to easily deploy solutions that cover
both the cloud network and data exchange with external de-
vices. It does not require the system designer to manually create
components to implement this interface for each use case.

One option (A2.1) is to explicitly include the device nodes
n the visual editor. For system designers, it would appear like

onstructing a single, coherent architecture, with the possibility

T. Veiga, H.A. Asad, F.A. Kraemer et al. Future Generation Computer Systems 142 (2023) 4–13

t
a
r
a
s
p
c
r

c
o
a
s
T
a
u
i
w
(
h

8

s
a
g
o
c
i
t
o
T
s

a
w
a
b
f
m
m
s
i
i

m
g
e
d
w

8

c
b
r
i
d
t
c
a
c
f

h
t
c
w
a
d
m

8

l
n
s
r
a
c
b
t
a
a

9

n
t
i
O
a
i
e

p
T
s
t
a
T
i
d
s
t
w
s

d
o
t
a
t
t
b
e

C

d
A
–
K
s
S

o indicate where each component is intended to run. In this
lternative, it needs to be considered that most IoT devices cannot
un containers (due to their limited processing power) and that
single configuration output would not be sufficient. Therefore,
eparate configuration files and scripts could be automatically
roduced by the platform for each of the network’s physical
omponents, separating code for devices from code for containers
unning on servers.

Another option (A2.2) is to offer a generic interface for in-
oming data that can act as a data source module. Currently,
ne can encapsulate data fetching scripts for specific scenarios
nd include those as specific components for particular use cases,
imilar to the container Camera Data Source we used in Fig. 1.
his solution is neither reusable nor generic; therefore, we should
im for a more general functionality that can support the most
sed IoT data platforms. That way, users could have a generic
nterface to interact with different data sources and, possibly,
ith data incoming from different data platforms. Since solution
A2.1) requires considerable extensions of the platform, we have
ere opted for (A2.2).

.3. R3: Explicit and expressive triggers

As explained in Section 7.3, correct triggering is crucial for the
ystem’s efficient operation, as triggers define when data flows
nd computation and communications are scheduled. When trig-
ers execute too often, computational resources may be wasted
n data with no or minor changes, and when triggers are exe-
uted not often enough, information may be outdated. Moreover,
n cognitive systems, triggers are not necessarily tied exclusively
o events from the environment, but can also depend on the state
f knowledge or the recognition of trends or other situations.
riggers are therefore an important design element in a cognitive
ystem that deserves careful consideration.
A critical trigger in our use case is the retraining of the visual

ttention model. In our implementation, we update the model
ith every reception of a new image, which is simple but implies
lso unnecessary computational resources and hence energy. A
etter solution would be to update the model less frequently,
or instance, once a day. We should hence be able to define
ore expressive triggers, for instance by defining minimum and
aximum frequencies, depending on learning progress. Triggers
hould be able to take external events into account but also be
ndependent from them if the environment suddenly does not
ssue such events anymore.

As a workaround, we implemented the triggers as part of the
anually written containers. However, this solution is neither
eneric nor flexible as it is hard-coded and hidden inside contain-
rs. We suggest therefore that the visual editor allow to directly
efine triggers that can be connected to data flows and interact
ith the components.

.4. R4: Reuse below the top-level

In the deployment process of an architecture there are typi-
ally generic and specific components. Generic components can
e reused in different pipelines, often across users and project,
anging from data management (e.g., data collators that merge
ncoming data from different containers to a single interface) to
ata analysis services (e.g., containers encapsulating object detec-
ion algorithms which are provided as a service by the respective
ontainer interface). In contrast, specific components are tailored
nd need to be built from scratch for specific needs of each use
ase (e.g., dashboard containers that show specific information
rom the system required by a client).
11
In the current version of the AI4EU platform, reuse can only
appen at the level of containers and only at the top-level of
he system. Therefore, the YOLO container for object detection is
urrently placed at the top-level, though it would be better placed
ithin each manager instance. As a workaround, we placed it
t the top level and routed the communication from inside the
evice manager to it, instead of keeping this internal to the device
anager.

.5. R5: Architecture templates

In addition to the possibility of reusing containers at several
evels, we suggest the possibility of offering templates for cog-
itive architectures. This works as a compromise between the
pecific needs of each component and the generic property of the
eference model and as a mean to better categorize containers
vailable in the public catalogs. In contrast to a container that
an be reused, a template would allow some components to
e open slots, into which specific components are placed once
he template is instantiated. It would hence encapsulate inter-
ction patterns between components and useful to document
rchitecture traits that go beyond single cohesive components.

. Conclusions

We analyzed the current status of deploying solutions for cog-
itive, self-adaptive IoT applications, in which AI is not only used
o analyze domain data but also aspects of the IoT devices to facil-
tate optimized operations through adapting to the environment.
ur work shows the effectiveness of the cognitive architecture for
specific use case, namely the detection and counting of persons

n a skiing area through cameras. The operation is made more
fficient using visual attention models that were learned.
AI platforms allow the user to create pipelines where com-

onents are based on containers reusing proven AI solutions.
his makes them attractive to be used in such cognitive IoT
olutions. However, our experience in this use case also shows
hat the current status of deploying platforms lack some flexible
nd usable features to support these cognitive architectures fully.
he main gaps we identified are related to managing multiple
nstances of the same container, integrating IoT devices in the
eployment process, including explicit triggers while creating
olutions in the platforms’ editing tools, and the availability of
he template architectures in the platforms. For each of them,
e analyze why they are important features and discuss possible
uggestions for future developments of the platforms.
Deployment platforms have a high potential to facilitate the

eployment process for practitioners and simplify the adoption
f new solutions with integrated AI components. In particular,
hey easily integrate most of the core features of IoT cognitive
rchitectures. Our analysis can help drive the development of
hese platforms, allowing them to cover a broader range of solu-
ions. These developments should be made general so that they
ecome a default offer by the platforms and then generalize for
ach specific use case.

RediT authorship contribution statement

Tiago Veiga: Conceptualization, Methodology, Software, Vali-
ation, Writing – original draft, Writing – review & editing. Hafiz
reeb Asad: Validation, Visualization, Formal analysis, Writing
original draft, Writing – review & editing. Frank Alexander
raemer: Conceptualization, Writing – original draft, Supervi-
ion, Writing – review & editing. Kerstin Bach: Conceptualization,
upervision, Writing – review & editing.

T. Veiga, H.A. Asad, F.A. Kraemer et al. Future Generation Computer Systems 142 (2023) 4–13

D

c
t

F

z
a

D

R

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

unding

This work was partially funded by the European Union’s Hori-
on 2020 research and innovation program, project AI4EU, grant
greement No. 825619.

ata availability

Data will be made available on request.

eferences

[1] S. Sinche, D. Raposo, N. Armando, A. Rodrigues, F. Boavida, V. Pereira,
J.S. Silva, A survey of IoT management protocols and frameworks, IEEE
Commun. Surv. Tutor. 22 (2) (2020) 1168–1190, http://dx.doi.org/10.1109/
COMST.2019.2943087.

[2] H. Muccini, M. Sharaf, D. Weyns, Self-adaptation for cyber-physical
systems: a systematic literature review, in: Proceedings of the 11th
International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, 2016, pp. 75–81.

[3] I. Alfonso, K. Garcés, H. Castro, J. Cabot, Self-adaptive architectures in IoT
systems: a systematic literature review, J. Internet Serv. Appl. 12 (1) (2021)
1–28.

[4] A.E. Braten, F.A. Kraemer, D. Palma, Autonomous IoT device management
systems: Structured review and generalized cognitive model, IEEE Internet
Things J. 8 (6) (2021) 4275–4290, http://dx.doi.org/10.1109/JIOT.2020.
3035389.

[5] B. Athamena, Z. Houhamdi, Cognitive and autonomic IoT system design, in:
2021 Eighth International Conference on Software Defined Systems, SDS,
2021, pp. 1–7, http://dx.doi.org/10.1109/SDS54264.2021.9732121.

[6] F. Alawad, F.A. Kraemer, Value of Information in Wireless Sensor Network
Applications and the IoT: A Review, IEEE Sens. J. 22 (10) (2022) 9228–9245,
http://dx.doi.org/10.1109/jsen.2022.3165946.

[7] B. Butzin, F. Golatowski, D. Timmermann, Microservices approach for the
internet of things, in: 2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation, ETFA, 2016, pp. 1–6, http://dx.doi.
org/10.1109/ETFA.2016.7733707.

[8] K. Thramboulidis, D.C. Vachtsevanou, A. Solanos, Cyber-physical microser-
vices: An IoT-based framework for manufacturing systems, in: 2018 IEEE
Industrial Cyber-Physical Systems, ICPS, 2018, pp. 232–239, http://dx.doi.
org/10.1109/ICPHYS.2018.8387665.

[9] C.J.L. de Santana, B. de Mello Alencar, C.V.S. Prazeres, Reactive microser-
vices for the internet of things: A case study in Fog computing, in:
Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing,
SAC ’19, Association for Computing Machinery, New York, NY, USA, 2019,
pp. 1243–1251, http://dx.doi.org/10.1145/3297280.3297402.

[10] M. Alam, J. Rufino, J. Ferreira, S.H. Ahmed, N. Shah, Y. Chen, Orchestration
of microservices for IoT using docker and edge computing, IEEE Com-
mun. Mag. 56 (9) (2018) 118–123, http://dx.doi.org/10.1109/MCOM.2018.
1701233.

[11] C. Savaglio, G. Fortino, Autonomic and cognitive architectures for the
internet of things, in: G. Di Fatta, G. Fortino, W. Li, M. Pathan, F. Stahl,
A. Guerrieri (Eds.), Internet and Distributed Computing Systems, Springer
International Publishing, Cham, 2015, pp. 39–47.

[12] A. Amato, A. Coronato, An IoT-aware architecture for smart healthcare
coaching systems, in: 2017 IEEE 31st International Conference on Advanced
Information Networking and Applications, AINA, 2017, pp. 1027–1034,
http://dx.doi.org/10.1109/AINA.2017.128.

[13] Y.C. Pranaya, M.N. Himarish, M.N. Baig, M.R. Ahmed, Cognitive architecture
based smart grids for smart cities, in: 2017 3rd International Conference on
Power Generation Systems and Renewable Energy Technologies, PGSRET,
2017, pp. 44–49, http://dx.doi.org/10.1109/PGSRET.2017.8251799.

[14] O.G. Rosado, P.F.M.J. Verschure, Distributed adaptive control: An ideal
cognitive architecture candidate for managing a robotic recycling plant,
in: V. Vouloutsi, A. Mura, F. Tauber, T. Speck, T.J. Prescott, P.F.M.J. Ver-
schure (Eds.), Biomimetic and Biohybrid Systems, Springer International
Publishing, Cham, 2020, pp. 153–164.

[15] J. Zhang, D. Tao, Empowering Things With Intelligence: A Survey of the
Progress, Challenges, and Opportunities in Artificial Intelligence of Things,
IEEE Internet Things J. 8 (10) (2021) 7789–7817, http://dx.doi.org/10.1109/
jiot.2020.3039359.
12
[16] G. Kousiouris, S. Tsarsitalidis, E. Psomakelis, S. Koloniaris, C. Bardaki, K.
Tserpes, M. Nikolaidou, D. Anagnostopoulos, A microservice-based frame-
work for integrating IoT management platforms, semantic and AI services
for supply chain management, ICT Express 5 (2) (2019) 141–145, http:
//dx.doi.org/10.1016/j.icte.2019.04.002.

[17] G. Myoung Lee, T.-W. Um, J.K. Choi, AI as a microservice (AIMS) over 5G
networks, in: 2018 ITU Kaleidoscope: Machine Learning for a 5G Future,
ITU K, 2018, pp. 1–7, http://dx.doi.org/10.23919/ITU-WT.2018.8597704.

[18] Y. Wu, Cloud-edge orchestration for the internet of things: Architecture
and AI-powered data processing, IEEE Internet Things J. 8 (16) (2021)
12792–12805, http://dx.doi.org/10.1109/JIOT.2020.3014845.

[19] G. Premsankar, M. Di Francesco, T. Taleb, Edge computing for the internet
of things: A case study, IEEE Internet Things J. 5 (2) (2018) 1275–1284,
http://dx.doi.org/10.1109/JIOT.2018.2805263.

[20] F. Al-Doghman, N. Moustafa, I. Khalil, Z. Tari, A. Zomaya, AI-enabled secure
microservices in edge computing: Opportunities and challenges, IEEE
Trans. Serv. Comput. (2022) 1, http://dx.doi.org/10.1109/TSC.2022.3155447.

[21] D. Rosendo, A. Costan, P. Valduriez, G. Antoniu, Distributed intelligence on
the Edge-to-Cloud Continuum: A systematic literature review, J. Parallel
Distrib. Comput. 166 (2022) 71–94, http://dx.doi.org/10.1016/j.jpdc.2022.
04.004, arXiv:2205.01081.

[22] S. Wang, Y. Hu, J. Wu, KubeEdge.AI: AI platform for edge devices, arXiv,
2020, http://dx.doi.org/10.48550/arxiv.2007.09227.

[23] O. Debauche, S. Mahmoudi, S.A. Mahmoudi, P. Manneback, F. Lebeau, A
new Edge Architecture for AI–IoT services deployment, Procedia Comput.
Sci. 175 (2020) 10–19, http://dx.doi.org/10.1016/j.procs.2020.07.006.

[24] S. Teerapittayanon, B. McDanel, H. Kung, Distributed Deep Neural Networks
over the Cloud, the Edge and End Devices, in: 2017 IEEE 37th International
Conference on Distributed Computing Systems, ICDCS, 2017, pp. 328–339,
http://dx.doi.org/10.1109/icdcs.2017.226.

[25] F. Zhu, B.C. Ooi, C. Miao, H. Wang, I. Skrypnyk, W. Hsu, S. Chawla, A.
Banitalebi-Dehkordi, N. Vedula, J. Pei, F. Xia, L. Wang, Y. Zhang, Auto-Split:
A General Framework of Collaborative Edge-Cloud AI, in: Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
2021, pp. 2543–2553, http://dx.doi.org/10.1145/3447548.3467078.

[26] S. Zhao, M. Talasila, G. Jacobson, C. Borcea, S.A. Aftab, J.F. Murray, Packaging
and sharing machine learning models via the acumos AI open platform,
in: 2018 17th IEEE International Conference on Machine Learning and
Applications, ICMLA, 2018, pp. 841–846, http://dx.doi.org/10.1109/ICMLA.
2018.00135.

[27] P. Schüller, J.P. Costeira, J. Crowley, J. Grosinger, F. Ingrand, U. Köckemann,
A. Saffiotti, M. Welss, Composing complex and hybrid AI solutions, 2022,
http://dx.doi.org/10.48550/ARXIV.2202.12566.

[28] A. Paleyes, R.-G. Urma, N.D. Lawrence, Challenges in deploying machine
learning: A survey of case studies, ACM Comput. Surv. 55 (6) (2022)
http://dx.doi.org/10.1145/3533378.

[29] AI4EU, Europe’s AI-on-demand platform, 2022, URL https://www.
ai4europe.eu. (Last Accessed July 2022).

[30] Docker, Docker hub, 2022, URL https://www.docker.com/products/docker-
hub/. (Last Accessed July 2022).

[31] Google, Protocol buffers, 2022, URL https://developers.google.com/
protocol-buffers/. (Last Accessed July 2022).

[32] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon,
TaoXie, J. Fang, imyhxy, K. Michael, Lorna, V. Abhiram, D. Montes, J.
Nadar, Laughing, tkianai, yxNONG, P. Skalski, Z. Wang, A. Hogan, C. Fati, L.
Mammana, AlexWang1900, D. Patel, D. Yiwei, F. You, J. Hajek, L. Diaconu,
M.T. Minh, ultralytics/yolov5: v6.1 - TensorRT, TensorFlow edge TPU and
OpenVINO export and inference, 2022, http://dx.doi.org/10.5281/zenodo.
6222936.

[33] H. Jayakumar, K. Lee, W.S. Lee, A. Raha, Y. Kim, V. Raghunathan, Powering
the internet of things, in: 2014 IEEE/ACM International Symposium on Low
Power Electronics and Design, ISLPED, 2014, pp. 375–380, http://dx.doi.org/
10.1145/2627369.2631644.

[34] W. Ayoub, A.E. Samhat, F. Nouvel, M. Mroue, J.-C. Prévotet, Internet of
Mobile Things: Overview of LoRaWAN, DASH7, and NB-IoT in LPWANs
Standards and Supported Mobility, IEEE Commun. Surv. Tutor. 21 (2)
(2019) 1561–1581, http://dx.doi.org/10.1109/COMST.2018.2877382.

[35] X. Shen, J. Tuck, R. Bianchini, V. Sarkar, A. Colin, E. Ruppel, B. Lucia, A
reconfigurable energy storage architecture for energy-harvesting devices,
ACM SIGPLAN Not. 53 (2) (2018) 767–781, http://dx.doi.org/10.1145/
3173162.3173210.

[36] F.K. Shaikh, S. Zeadally, Energy harvesting in wireless sensor networks: A
comprehensive review, Renew. Sustain. Energy Rev. 55 (2016) 1041–1054.

[37] R. Ahmed, B. Buchli, S. Draskovic, L. Sigrist, P. Kumar, L. Thiele, Optimal
power management with guaranteed minimum energy utilization for solar
energy harvesting systems, ACM Trans. Embedded Comput. Syst. 18 (4)
(2019) 30, http://dx.doi.org/10.1145/3317679.

http://dx.doi.org/10.1109/COMST.2019.2943087
http://dx.doi.org/10.1109/COMST.2019.2943087
http://dx.doi.org/10.1109/COMST.2019.2943087
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb2
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb2
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb2
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb2
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb2
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb2
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb2
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb3
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb3
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb3
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb3
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb3
http://dx.doi.org/10.1109/JIOT.2020.3035389
http://dx.doi.org/10.1109/JIOT.2020.3035389
http://dx.doi.org/10.1109/JIOT.2020.3035389
http://dx.doi.org/10.1109/SDS54264.2021.9732121
http://dx.doi.org/10.1109/jsen.2022.3165946
http://dx.doi.org/10.1109/ETFA.2016.7733707
http://dx.doi.org/10.1109/ETFA.2016.7733707
http://dx.doi.org/10.1109/ETFA.2016.7733707
http://dx.doi.org/10.1109/ICPHYS.2018.8387665
http://dx.doi.org/10.1109/ICPHYS.2018.8387665
http://dx.doi.org/10.1109/ICPHYS.2018.8387665
http://dx.doi.org/10.1145/3297280.3297402
http://dx.doi.org/10.1109/MCOM.2018.1701233
http://dx.doi.org/10.1109/MCOM.2018.1701233
http://dx.doi.org/10.1109/MCOM.2018.1701233
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb11
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb11
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb11
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb11
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb11
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb11
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb11
http://dx.doi.org/10.1109/AINA.2017.128
http://dx.doi.org/10.1109/PGSRET.2017.8251799
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb14
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb14
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb14
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb14
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb14
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb14
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb14
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb14
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb14
http://dx.doi.org/10.1109/jiot.2020.3039359
http://dx.doi.org/10.1109/jiot.2020.3039359
http://dx.doi.org/10.1109/jiot.2020.3039359
http://dx.doi.org/10.1016/j.icte.2019.04.002
http://dx.doi.org/10.1016/j.icte.2019.04.002
http://dx.doi.org/10.1016/j.icte.2019.04.002
http://dx.doi.org/10.23919/ITU-WT.2018.8597704
http://dx.doi.org/10.1109/JIOT.2020.3014845
http://dx.doi.org/10.1109/JIOT.2018.2805263
http://dx.doi.org/10.1109/TSC.2022.3155447
http://dx.doi.org/10.1016/j.jpdc.2022.04.004
http://dx.doi.org/10.1016/j.jpdc.2022.04.004
http://dx.doi.org/10.1016/j.jpdc.2022.04.004
http://arxiv.org/abs/2205.01081
http://dx.doi.org/10.48550/arxiv.2007.09227
http://dx.doi.org/10.1016/j.procs.2020.07.006
http://dx.doi.org/10.1109/icdcs.2017.226
http://dx.doi.org/10.1145/3447548.3467078
http://dx.doi.org/10.1109/ICMLA.2018.00135
http://dx.doi.org/10.1109/ICMLA.2018.00135
http://dx.doi.org/10.1109/ICMLA.2018.00135
http://dx.doi.org/10.48550/ARXIV.2202.12566
http://dx.doi.org/10.1145/3533378
https://www.ai4europe.eu
https://www.ai4europe.eu
https://www.ai4europe.eu
https://www.docker.com/products/docker-hub/
https://www.docker.com/products/docker-hub/
https://www.docker.com/products/docker-hub/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://dx.doi.org/10.5281/zenodo.6222936
http://dx.doi.org/10.5281/zenodo.6222936
http://dx.doi.org/10.5281/zenodo.6222936
http://dx.doi.org/10.1145/2627369.2631644
http://dx.doi.org/10.1145/2627369.2631644
http://dx.doi.org/10.1145/2627369.2631644
http://dx.doi.org/10.1109/COMST.2018.2877382
http://dx.doi.org/10.1145/3173162.3173210
http://dx.doi.org/10.1145/3173162.3173210
http://dx.doi.org/10.1145/3173162.3173210
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb36
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb36
http://refhub.elsevier.com/S0167-739X(22)00432-0/sb36
http://dx.doi.org/10.1145/3317679

T. Veiga, H.A. Asad, F.A. Kraemer et al. Future Generation Computer Systems 142 (2023) 4–13

p

[38] A. Borji, L. Itti, State-of-the-art in visual attention modeling, IEEE Trans.
Pattern Anal. Mach. Intell. 35 (1) (2013) 185–207, http://dx.doi.org/10.
1109/TPAMI.2012.89.

[39] H.A. Asad, F.A. Kraemer, K. Bach, C. Renner, T.S. Veiga, Learning attention
models for resource-constrained, self-adaptive visual sensing applications,
in: Proceedings of the Conference on Research in Adaptive and Convergent
Systems, 2022, pp. 165–171, http://dx.doi.org/10.1145/3538641.3561505.

Tiago Veiga received the MSc (2010) and Ph.D. (2015)
degrees in Electrical and Computer Engineering from
Instituto Superior Técnico, University of Lisbon, Portu-
gal. He is a postdoctoral researcher at the Department
of Computer Science at the Norwegian University of
Science and Technology (NTNU). Previously, he held
a postdoctoral research position at the Institute for
Systems and Robotics, Lisbon, Portugal, and an ERCIM
Alain Bensoussan Research Fellowship at NTNU. His
main research interests are in artificial intelligence,
autonomous agents, planning under uncertainty, active

erception, and adaptive behavior.

Hafiz Areeb Asad is currently pursuing a Ph.D. degree
in information security and communications tech-
nology at the Norwegian University of Science and
Technology, Trondheim, Norway. He received the M.Sc.
degree in computer science from Uppsala University,
Sweden, in 2020. He was a recipient of a Swedish
Institute (SI) scholarship for global professionals. He did
his B.Sc. degree in computer science from National Uni-
versity of Computer and Emerging Sciences, Islamabad,
Pakistan in 2017. His current research interests include
autonomous, cognitive and battery-less IoT.
13
Frank Alexander Kraemer received the Dipl.-Ing. de-
gree in electrical engineering from the University of
Stuttgart, Stuttgart, Germany, in 2003, the M.Sc. de-
gree in information technology from the University of
Stuttgart, and the Ph.D. degree in model-driven systems
development from the Department of Telematics, Nor-
wegian University of Science and Technology (NTNU),
Trondheim, Norway, in 2008. He is an Associate Pro-
fessor with the Department of Information Security
and Communication Technology, NTNU, and worked
previously as a Technology Manager at a startup for IoT

software that he co-founded. His current research interests include Internet-of-
Things architectures and application development, embedded and autonomous
sensor systems, and the application of statistical methods and machine learning
in constrained settings.

Kerstin Bach is a professor in Artificial Intelligence at
the Department of Computer Science at the Norwegian
University of Science and Technology (NTNU). Kerstin
received her M.Sc. in Information Management and
Technology (2007) and Dr. rer. nat. (Ph.D., 2012) from
the University of Hildesheim, Germany. She worked as
a research engineer at Verdande Technology (2013–
2014) before joining NTNU. Her research interests are
Artificial Intelligence methods for developing intelli-
gence decision support systems involving both domain
experts and end-users to create explainable, inter-

pretable, and trustworthy AI systems. In particular, she works on data-driven
and knowledge-intensive Case-Based Reasoning. She is the deputy head of
the NTNU’s Data and Artificial Intelligence group, program manager of the
Norwegian Research Center for AI Innovation (NorwAI), and associated with the
Norwegian Open AI Lab.

http://dx.doi.org/10.1109/TPAMI.2012.89
http://dx.doi.org/10.1109/TPAMI.2012.89
http://dx.doi.org/10.1109/TPAMI.2012.89
http://dx.doi.org/10.1145/3538641.3561505

	Towards containerized, reuse-oriented AI deployment platforms for cognitive IoT applications
	Introduction
	Related Work
	Container-Based AI Deployment Platforms
	Use Case: Person Counting in a Skiing Area
	Towards Self-Adaptive, Cognitive IoT
	Use Case: Self-Adaptive, Cognitive Version
	Cognitive IoT Model
	Component Structure
	Loops for Autonomous Behavior, Learning and Adaptation
	Triggers

	Container-Based Implementation
	R1: Container Instance Management
	R2: Closer Integration with Devices
	R3: Explicit and Expressive Triggers
	R4: Reuse Below the Top-Level
	R5: Architecture Templates

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References

