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Abstract— We consider the problem of communication plan-
ning for human-machine cooperation in stochastic and par-
tially observable environments. Partially Observable Markov
Decision Processes with Information Rewards (POMDPs-IR)
form a powerful framework for information-gathering tasks in
such environments. We propose an extension of the POMDP-
IR model, called a Communicating POMDP-IR (com-POMDP-
IR), that allows an agent to proactively plan its communication
actions by using an approximation of the human’s beliefs. We
experimentally demonstrate the capability of our com-POMDP-
IR agent to limit its communication to relevant information and
its robustness to lost messages.

I. INTRODUCTION

As artificial agents enter human-inhabited environments,
we expect them to be capable of communicating relevant
information about their knowledge of environment to us,
meaning that they should be capable to proactively select
relevant information to report to a teammate. We refer to
this process as Communication Planning and many applica-
tions require such communication. For instance, in assisted
surveillance domains as the one described by Witwicki et
al. [1], a human operator must monitor many parameters
simultaneously (e.g., observe several surveillance cameras
for uncommon events) and is at risk of being overwhelmed
by the amount of information to process. In such systems,
artificial agents can select and communicate about the rel-
evant information to alleviate the operator’s workload and
improve the efficiency of the surveillance process. Other
examples of applications might involve transparency [2] or
explainable agency [3] in which the agent should report about
its behavior and actions when they might not align with what
the user is expecting. Generally speaking, this relates to the
problem of Active Situation Reporting [4].

Partially Observable Markov Decision Processes
(POMDPs) are suited for these types of problems as
they are a well-studied mathematical framework to perform
sequential decision making in uncertain environments.
POMDPs with Information Rewards [5] are an extension
to specifically tackle information-gathering tasks while
remaining in the POMDP framework, thus allowing the use
of existing POMDP solvers.
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Throughout this paper, we will consider the illustrative
example presented in Figure 1 and inspired by Spaan et
al. [5]. An exploring agent is located in an environment with
an alarm and must perform three tasks in parallel: patrol the
environment, observe the current state of the alarm and warn
a human operator when the alarm is red. This is an example
of a challenging problem where the patrolling agent must
reason about its local actions and, simultaneously, decide
about the communication to the human operator.

Fig. 1: The surveillance problem. An agent must patrol the envi-
ronment by traveling between two goals (marked with the stars)
while looking at the alarm color and communicating its color to
the operator.

Our main contribution is a decision-theoretic framework,
called a Communicating POMDP-IR (com-POMDP-IR),
which integrates information-gathering tasks and commu-
nication planning with more classic goal-oriented tasks.
This framework only assumes that the party receiving the
communication is using a Bayesian belief update and does
not require any other information about its policy or internal
model. For this reason, the com-POMDP-IR is well suited for
human-machine collaboration. The core idea of this model
is that the agent is maintaining its own belief state as well
as an estimation of the human’s belief over a set of specific
features, and that it is rewarded when both are synchronized.
To do so, at each time step, the agent selects its primitive and
information-reward actions [5], as well as a communication
and a commitSync action. The communication action only
affects the agent’s estimation of the human belief, while the
commitSync action allows the system designer to reward the
agent for synchronizing its belief state with the human’s. We
show experimentally that a com-POMDP-IR agent is capable
of restricting its communication to relevant information only
and that it adapts its behavior to the reliability of the
communication channel.

The remainder of this paper is organized as follows.
Section II presents different studies and models similar to our
problem. Section III reviews the key aspects of the POMDP-
IR on which our work is based and Section IV presents



our contribution: the com-POMDP-IR. Section V evaluates
this model on the surveillance problem. Finally, Section VI
summarizes our contributions and suggests leads for future
work.

II. RELATED WORK

Decision making for Human-Machine Interaction is fun-
damentally a problem of decision making under uncertainty.
Whether it is related to the human’s actions, the human’s
state, or the human’s mental state (their beliefs, goals and
intentions), some uncertainty is unavoidable. As a very
well-studied mathematical framework, Partially Observable
Decision Processes (POMDPs) seem to be particularly suit-
able in this context, and have already been successfully
used to facilitate human-machine interaction. For instance,
Taha et al. model HRI-related variables such as intention
and satisfaction within a POMDP to assist the user more
intuitively [6]. More recently, Garcia and Lima model the
behavior of a human user in a POMDP-IR to learn latent
states of the user [7].

Our work focuses on integrating information-gathering
tasks, communication planning and goal-oriented tasks in
the context of human-machine cooperation. Information-
gathering tasks in decision-theoretic settings have received
significant attention in the last decade, especially with the
development of the ρ-POMDP [8] and the POMDP-IR [5],
which reward agents based on belief states in addition to
environmental states. Both models have been later shown to
be equivalent [9]. Renoux et al. [10] and Lauri et al. [11]
considered information gathering in multi-agent systems,
using respectively POMDPs and Dec-POMDPs.

The principle of optimizing communication actions in
decision-theoretic multiagent settings has been previously
considered, mostly under a request-answer framework (one
agent requests information that another agent provides) [12],
and with the goal of reducing the complexity of solving
large decentralized models by exploiting local interactions,
thus assuming that each agent is modeled within the same
approach (usually a Dec-POMDP or MTDP) [13], [14], [12].
In the case of a human-machine team, the human’s actions
cannot be controlled and such modeling is impossible. Re-
cently, Wang et al. [15] consider this specific setup but expect
the human’s policy and observation model to be known.
Their work, similarly to ours, introduces some elements of
an Artificial Theory of Mind. The concept of Theory of
Mind (ToM), first introduced in the field of Behavioral Sci-
ences [16], describes the ability to dissociate other’s mental
states (beliefs, intentions and goals) from one’s own, and to
reason about these mental states. Recently, several studies
have been focusing on implementing an Artificial Theory
of Mind, either completely or partially. Some models allow
to capture the complete model of other agents, such as the
Interactive-POMDP (I-POMDP) [17], and its communicating
extension, the CIPOMDP [18]. These two models are very
expressive, but at the cost of a high complexity and require
to maintain possibly infinitely nested beliefs. Various studies
focus on the belief aspects of the Theory of Mind [15], [10],

in an attempt to reduce the model’s complexity. This paper
follows the same idea and uses a simple belief-based version
of an Artificial Theory of Mind.

III. BACKGROUND ON POMDP-IR

Our work is based on the POMDP with Information
Rewards (POMDP-IR) [5]. In this section, we review the key
aspects of the POMDP-IR as well as the notation relevant to
the rest of the paper.

A POMDP-IR is represented as a tuple 〈X ,A,O, T ,Ω, R〉
where X = {X1, . . . , X|X |} is a set of state factors,A is a set
of actions, and O = {O1, . . . , O|O|} is a set of observation
factors. We define S = 2X as the set of all possible states and
Y = 2O as the set of all possible observations. The transition
function T is therefore defined as T : S×A×S → [0, 1], and
the observation is function is defined as: Ω : S ×A× Y →
[0, 1]. R : S×A → R is the reward function. In a POMDP-
IR, the set of state factors X contains l factors which are
called Factors of Interest (FoIs), which are the factors that the
agent needs to explore. The POMDP-IR introduces the notion
of Information Reward (IR) actions. There are as many IR
actions as there are FoIs, and their values are either commit
or null . At each time step, the agent selects simultaneously a
primitive action and l IR actions. In addition to its primitive
reward, the agent is also rewarded for each IR action. The
IR reward is based on two values: rcorrect and rincorrect .
Intuitively, the agent receives rcorrect when it commits to
a correct value for the factor Xi, and rincorrect otherwise.
Therefore, the agent should commit to a factor Xi when its
belief over Xi’s value is high enough. The values of rcorrect
and rincorrect are set depending on the belief threshold β the
system designer wishes to enforce before the agent commits.
The relation between rcorrect , rincorrect and β is given by
rcorrect = 1−β

β rincorrect .

IV. COMMUNICATING POMDP-IR

In this section, we present the main contribution of this
paper: a decision-theoretic framework rewarding agents for
efficient communication planning. This framework is based
on three main aspects:

1) an extended set of state factor, which includes not
only the state factors for the communicating agent but
also duplicated state factors which represent what the
communicating agent believes the recipient knows about
certain state factors of interest;

2) communication actions that can be chosen simultane-
ously to other domain-level actions;

3) a reward function that rewards the agent for maintaining
synchronized beliefs over its own Factors of Interest and
what it believes the recipient knows about these Factors
of Interest.

Formally, we consider one artificial agent, denoted by φ
and a human operator, denoted by ψ. We consider a set Xφ =
{Xφ

1 , . . . , X
φ
n} of state variables, the first lφ of them being

POMDP-IR Factors of Interest (FoIs). Within these l FoIs,
we consider that the first k FoIs are also of interest for the



Fig. 2: Dynamic Bayesian Network of the Surveillance Problem
model. Grey nodes are specific to the com-POMDP-IR.

human, and that the agent must communicate to the human
about them. We call these k FoIs shared FoIs.

Our approach is an extension of the POMDP-IR model
which integrates communication actions. Figure 2 presents
the Dynamic Bayesian Network representation of our model
for the surveillance problem.

A. Extended State Space and Observation Factors

To be able to plan for optimal communication, Agent φ
needs to model the beliefs of the human ψ in its own belief
state, hence leading to nested beliefs. In the com-POMDP-
IR, we consider only one level of nested beliefs: we only
represent what Agent φ believes about the human ψ’s beliefs.
To do so, we extend the belief state of the POMDP by
duplicating each of the k shared FoIs. These duplicated
factors represent what Agent φ believes the human knows
about state factors Xi. For improved readability, we use the
notation Xφ

i for the classic state factors for Agent φ, Xψ/φ
i

for the duplicated state factors, and Xi for any state factor.
Definition 1 (State Factor Space): The set of state factors

X of a com-POMDP-IR is defined by:

X = X φ ∪ Xψ/φ

= {Xφ
1 , . . . , X

φ
k , . . . , X

φ
l , . . . , X

φ
n} ∪ {X

ψ/φ
1 , . . . , X

ψ/φ
k },

where X1, . . . , Xk are the shared Factors of Interest and
Xφ
k+1, . . . , X

φ
l are the Factors of Interest specific to Agent φ.

We have |X | = 2k+(l−k)+(n− l), where n is the number
of state factors, l < n the number of FoIs and k < l the
number of shared FoIs.

Example 1 (Surveillance Problem - State Factors): In
the case of the surveillance problem, the state factors are

the following:

X = {Colorφ,Positionφ,Goalφ} ∪ {Colorψ/φ}

with Color being the color of the alarm (red or green),
Position being the current position of the robot (y1, y2 or
y3) and Goal being the current goal of the robot (y1 or y3).
In this case, only Color is a shared factor of interest.

B. Communication Actions

Agent φ should be capable of communicating any possible
value for each of the shared FoIs. To do so, we create
a communicate action factor, whose possible values are
the combination of all the shared FoIs and their respective
possible values, plus a noCom action which does not com-
municate anything. At each time step, the agent must choose
a domain-level action and a communication action. Formally,
this is described by A = Ad × Acom , where Ad is the
set of domain-level actions and Acom the communication
action, with DOM (Acom) =

⋃
i≤k DOM (Xi). We have

|Acom | = 1 +
∑k
i=1 |Xi|. We denote by com(Xi, xi) the

action of communicating the value xi for state factor Xi.
Depending on the domain, it is also possible to create

one communication action factor per FoI. In this case, the
domain of each communication action factor corresponds
to the domain of the FoI, plus the noCom action. The
agent would have to choose one domain-level action and one
communication action per FoI at each time step. This would
allow the agent to communicate several pieces of information
at the same time, at the cost of increasing the number of
possible actions and therefore the complexity of the model.
We do not consider this option for the remainder of this paper
for the sake of simplicity, but all equations and algorithms
can be easily adapted to this setup.

As mentioned before, the state factors in Xψ represent
what Agent φ believes the human knows. At this point, it
is important to note that this might be an approximation of
what the human actually knows. Indeed, in some systems,
the human will only get information about the shared FoIs
through Agent φ, but in others it might get some level
of information through another channel, for instance by
monitoring him or herself. In this case, it is obvious that
Bφ(Xψ/φ) 6= Bψ(Xψ). In addition, if the communication
channel is not perfect, the information might not be received
by Agent ψ. All these aspects should be captured in the
transition function, as presented in Definition 2.

Definition 2 (Transition Function): The transition func-
tion of the com-POMDP-IR related to the communication
actions is defined as:

T (X
ψ/φ
i,t , X

ψ/φ
i,t+1, com(Xi, xi)) =

{
θ1 ∗ θ2 if Xψ/φ

i,t+1 = xi
1−θ1∗θ2
|Xi|−1 otherwise

T (X
ψ/φ
i,t , X

ψ/φ
i,t+1,noCom) =

{
θ2 if Xψ/φ

i,t = X
ψ/φ
i,t+1

1−θ2
|Xi|−1 otherwise

(1)
where θ1 represents the probability of the communication to
be transmitted successfully and θ2 represents the probability



that the human’s beliefs remain the same in the absence of
communication.

If the communication is perfect and the human only
receives information about from Agent φ, then θ1 = θ2 = 1.
If the communication is imperfect, θ1 < 1. If the human
ψ receives information from other sources than Agent φ,
θ2 < 1. Capturing the different aspects of the system within
θ1 and θ2 depends on the domain and should be defined by
the system designer.

C. Rewarding Relevant Communication

In the com-POMDP-IR, Agent φ should be rewarded for
communicating relevant information to the human ψ, which
means keeping a belief over Xψ/φ

i close to the belief over
Xφ
i for all i ≤ k. To do so, we introduce commitSync

actions, similar to the commit actions of the POMDP-IR [5].
There is one commitSync action for each factor Xi, i ≤ k
and one commit action for each factor Xi, k < i ≤ l. We
must then extend the set of actions described in Section IV-B
to obtain the complete action space of the com-POMDP-IR,
as presented in Definition 3.

Definition 3 (Action Space): The set of action factors of
the com-POMDP-IR is defined as follows:

A = Ad ×Acom ×A1 × · · · ×Ak × · · · ×Al (2)

with Ad being the set of domain-level actions, Acom

the set of communication actions, A1, . . . , Ak the set of
commitSync actions and Ak+1, . . . , Al the set of Informa-
tion Reward actions.

We have for each Xi, i ≤ k

Ai = {commitSync(xj),∀xj ∈ DOM (Xi)} ∪ {null}
At each time step, the agent will choose simultaneously a
domain-level action, a communication action, a commitSync
action for each shared FoI and a commit action for each
non-shared FoI. The commitSync actions only affects the
the beliefs of the agent concerning the human’s beliefs
(i.e. Xψ/φ

i ) and are used for rewarding the agent when it
communicates. As for the commit actions, they are used
to avoid belief-dependent rewards. Choosing a commitSync
action means that the agent commits to a given value for Xi

and to a synchronized belief over Xφ
i and Xψ/φ

i .
Example 2 (Surveillance Problem - Action Space): In

the surveillance problem, we have:

Ad = {left , right , look}
Acom = {com(color , red), com(color , green),noCom}
Acolor = {commitSync(red), commitSync(green),null}

Using the com-POMDP-IR action space, the agent re-
ceives a positive reward when it commits to a correct
synchronized belief, as presented in Definition 4.

Definition 4: The com-POMDP-IR reward function is de-
fined as follows:

R(X ,A) = Rd(X,Ad)

+

k∑
i=1

Rsync(Xi, Ai) +

l∑
i=k+1

Rcommit(Xi, Ai)

(3)
where Rd is the domain-level reward, Rsync the reward
associated to the commitSync actions, and Rcommit the
Information Reward [5].

For each Xi, i ≤ k, Rsync is defined as:

Rsync(Xi,null) = 0

Rsync(Xi, commitSync(xj)) ={
rsync if Xφ

i = xj ∧Xψ/φ
i = xj

−rnotSync otherwise

(4)

with rsync , rnotSync > 0.
The values of rsync and rnotSync have to be chosen

carefully to ensure that the agent only commits when its
beliefs over Xφ

i and Xψ
i are certain enough. It is possible

to choose different values of rsync and rnotSync for different
FoIs and even different values of a single FoI. For instance
in the surveillance problem, being certain that the alarm is
red might be considered more important than being certain
it is green.

D. Choosing the parameters

The com-POMDP-IR reward function depends on 2 ad-
ditional parameters compared to the POMDP-IR: rsync and
rnotSync . From Equation 4, we can compute the expected
reward for commitSync actions as follows:

R(bφ,Xi, commitSync(xj))

= bφ(Xφ
i = xj) · bφ(X

ψ/φ
i = xj) · rsync

− (1− bφ(Xφ
i = xj) · bφ(X

ψ/φ
i = xj)) · rnotSync

(5)
We wish the agent to select the commitSync action when

it is certain enough This translates mathematically to

R(bφ, Xi, commitSync(xj)) > 0

iff bφ(Xφ
i = xj) > β and bφ(X

ψ/φ
i = xj) > β,

(6)

where β is chosen by the system designer. Using this, we
can derive the relation between rsync and rnotSync :

β2rsync − (1− β2)rnotSync = 0 (7)

⇔ rsync =
1− β2

β2
rnotSync . (8)

V. EXPERIMENTS

We evaluate our approach in the case of the Surveillance
problem described in Section I. Agent φ is patrolling the
corridor. When performing a movement action, it has a
probability of 0.8 to end up in the intended space. When
it reaches one goal at the end of the corridor, the goal
switches to the other one. The alarm at the center of the



(a) β = 0.6

(b) βred = 0.8,βgreen = 0.7

(c) β = 0.9

Fig. 3: Surveillance problem results with θ1 = θ2 = 1. Each
figure shows the belief evolution over Colorφ (called Color) and
Colorψ/φ (called Color B) (top row), the communication action
and the robot position (middle row), and the actual color of the
alarm (bottom row). The dotted lines on the top row indicates the
values for βred and βgreen = 1− βred .

corridor starts green and will turn red with a probability of
0.8. Once red, it will turn back to green with a probability
of 0.1. The reward for reaching a goal is 15. Unless said
otherwise, the cost for a communication is 1. The policy
has been calculated with the Symbolic Perseus Solver [19],
modified for Information-Reward actions [5], with a random
sampling of 500 belief points. Each experiment has been run
for 500 episodes. During the experiments, we use rsync = 10
and calculate rnotSync for each β according to Equation 7.

We first evaluate the behavior of the com-POMDP-IR

(a) θ1 = 0.9, βred = 0.8, βgreen = 0.7

(b) θ1 = 0.7, βred = 0.8, βgreen = 0.7,

Fig. 4: Imperfect communication

agent in the case θ1 = θ2 = 1. (Section V-A). This allows us
to validate the model by ensuring that the agent is exploring
and planning its communication appropriately and to analyze
the influence of the threshold β on the behavior of the agent.
Next, we study the case where communication can be lost
(θ1 < 1) (Section V-B) and finally the case where the human
might receive information from other sources than Agent φ
(θ2 < 1) (Section V-C).

A. Perfect Communication

The threshold β for which the com-POMDP-IR agent
should choose to commit depends on the problem at hand
and must be carefully chosen by the designer. Figure 3
shows some of the possible thresholds and their effect
on the agent’s behavior. We see that a too low β (Fig.
3a) causes poor communication behavior. Indeed, in the
Surveillance problem, the alarm is more likely to turn red
and stay red than green. Therefore, the agent can commit to
a synchronized belief state without ever looking at the alarm
and only communicating red once. A too high β (Fig. 3c)
also causes undesirable communication patterns as the agent
is not capable of reaching such a threshold for one of the
values. As the model makes it possible to tailor β for each
of the possible values of the factor of interest, we can tune
the system for optimal communication (Fig. 3b).

B. Imperfect communication

Figure 4 shows the behavior of the com-POMDP-IR agent
when 10% and 30% of the messages are lost. The system is



θ = 1 θ = 0.99 θ = 0.9 θ = 0.8 θ = 0.7
βred 0.8 0.8 0.8 0.8 0.8
βgreen 0.8 0.8 0.7 0.7 0.6

TABLE I: Values of βred and βgreen for each θ1

Fig. 5: Accumulated reward for different values of θ1

relatively robust to lost messages, provided that β is carefully
chosen (Fig. 4a). As expected, when the risk of lost messages
is too high, the agent does not communicate anymore about
the less probable value of the alarm (green) as it cannot
reach the expected belief threshold, even if it is low (Fig. 4b).
However, the agent is still capable to communicate about the
more probable value.

Next, we consider the case of imperfect communication.
To do so, we model the human operator as a purely reactive
agent which performs an action raise-alarm when it receives
a message that the alarm is red. The system receives a
positive reward when the alarm is raised appropriately and
a negative reward otherwise. This experiment allows us to
check that the communication from Agent φ is enough to
ensure good performance of the system without proactive
human behavior. We run this experiment for different values
of θ1. To ensure that a system with perfect communication
(θ1 = 1) is performing optimally, we also computed the
value gathered by a centralized POMDP-IR, controlling the
agent performing the patrolling and raising the alarm. Since
the values of θ1 and β are linked, the values of β for this
experiment have been chosen in order to ensure the best
result for each value of θ1 and are shown in Table I.

Figure 5 shows the box plots of the value obtained
at the end of the simulation for each configuration. The
com-POMDP-IR agent performs as well as the centralized
POMDP-IR agent when θ1 = θ2 = 1. We also note that a
loss of 1% of the messages (θ1 = 0.99) does not significantly
affect the performance of the system and that a loss of
10% of the message still gives good results on average,
even though more variability is observed. For configurations
where communication is highly unreliable, the need for a
confirmation of the value by the human operator is obvious.

C. Varying recipient’s beliefs

The parameter θ2 allows us to model how the beliefs of
Agent ψ evolve without communications from Agent φ. In

(a) θ2 = 0.7 and cost = 1

(b) θ2 = 0.7, β = 0.7 and cost = 3

Fig. 6: Surveillance problem results with θ1 = 1, β = 0.7 and
various values of θ2.

this section, we consider a perfect communication (θ1 = 1)
and various values for θ2. Figure 6 shows the results of the
surveillance problem with varying values of θ2.

Figure 6a shows that when θ2 is low, the agent tends to
communicate more to maintain a low-uncertainty belief over
Xψ/φ. However, this can be mitigated by introducing a com-
munication cost as part of the domain-level reward, which
is given to the agent each time it chooses a communication
action (Figure 6b). One could also want to impose a certain
number of steps between two successive communications by
introducing a bookkeeping variable in the model for instance.

VI. CONCLUSION AND DISCUSSION

In this article, we considered the problem of communica-
tion planning for human-machine cooperation. This means
that the artificial agent must proactively select relevant pieces
of information to communicate to its human teammate at a
relevant time. Specifically, we considered that the agent must
decide on the timing and the information to send without
any request from the human, and that it does not have
access to the human’s actual beliefs. To tackle this problem,
the main contribution of this paper is the Communicating
POMDP-IR (com-POMDP-IR), an extension of the Partially
Observable Markov Decision Process with Information Re-
wards (POMDP-IR) model, that allows an artificial agent to
(i) maintain an estimate of the human’s beliefs regarding a
set of features of interest, based on previous communication



actions ; (ii) use this estimate to plan for relevant communi-
cation actions ; (iii) integrate this communication mechanism
with goal-oriented and information-gathering tasks. This
model has been tested in a surveillance problem, in which
a robot is patrolling a corridor and must report to a human
operator about the state of an alarm. In this scenario, the
human operator has no direct access to the alarm and is
therefore dependent on the communications from the robot
to perform their action. This toy problem demonstrates the
importance of reliable communication, especially when the
human cannot observe parts of the world. In our experiments,
the com-POMDP-IR demonstrated its ability to adjust its
communication actions depending on the expected reliability
of the communication channel (i.e., rate of lost messages)
and the expected evolution of the human’s beliefs in the
absence of communication.

Currently, our model presents three different limitations
that will be considered in future work. The first limitation
is an obvious scalability problem, related to the well-known
curse of dimensionality, which refers to the fact that solving
a POMDP becomes increasingly complex as the number of
states and actions increases. In our com-POMDP-IR, the
number of actions grows exponentially with the number of
features of interest and the number of agents in the system,
rendering it intractable for large-scale problems. Two options
can be considered to alleviate this issue. First, the actions
in the com-POMDP-IR fall under different categories: the
primitive actions only impact what the agent itself believes
regarding the environment, the communication actions only
impact the agent’s estimates of the human’s belief and the
commit actions (commit and commitSync) do not impact the
agent’s beliefs but only the reward given to the agent. Sat-
sangi et al. already showed that it was possible to decouple
the IR actions from the primitive actions in a POMDP-IR
[9] to make the solving more scalable. A similar approach
could be possible in the com-POMDP-IR case, using the
underlying structure of the action space. Second, another
option could be to limit the communications actions to a
choice between communicating and not communicating, and
deciding on the fly which information to send.

The second limitation resides in the fact that the com-
POMDP-IR is a one-way communication model: the artificial
agent sends information to the human but cannot integrate
information sent by the human. This is due to the fact
that the POMDP model requires an observation function to
process incoming observations (whether it comes from he
environment or from another agent) and that it is hard to
model the observation function for human communication.
To overcome this limitation, we are considering the use of
Reinforcement Learning mechanisms in order to improve a
baseline policy, similar to the approach of Bouton et al. [20].
The baseline policy would be the one computed by the com-
POMDP-IR, without considering incoming communication,
and the improved policy would include such communication
by learning the human’s communication behavior at run-
time.

Finally, the third limitation of our model concerns the

parameter θ2, which models the human’s belief evolution
in the absence of communication from the agent. In the
current model, this parameter is expected to be set by the
system designer, which is a challenging task. In addition,
representing the whole evolution of the human’s belief by a
single parameter is rather restrictive. We plan to overcome
this in two different ways. First, we can investigate how this
parameter could be learned or adapted by the artificial agent
during run-time. Second, we intend to use future incoming
communication to refine the agent’s estimate of the human’s
beliefs, inspired by Renoux et al. [21]. Indeed, incoming
communications provide information to the agent about what
the human knows, as we assume that agent and human are
cooperative and therefore only share information they believe
to be true. Therefore, the artificial agent should be able to use
such incoming messages to refine its estimate of the human’s
beliefs.
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