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Abstract— This paper proposes a Decision-Theoretic ap-
proach to problems involving interaction between robot systems
and human users, which takes into account the latent aspects of
Human-Robot interaction, e.g., the user’s status. The presented
approach is based on the Partially Observable Markov Decision
Process framework, which handles uncertainty in planning
problems, extended with information rewards to optimize the
information-gathering capabilities of the system. The approach
is formalized into a framework which considers: observable
and latent state variables; gesture and speech observations; and
action factors which are related to the agent’s actuators or to the
information gain goals (Information-Reward actions). Under
the proposed framework, the robot system is able to: actively
gain information and react according to latent states, inherent
to Human-Robot interaction settings; effectively achieve the
goals of the task in which the robot is employed; and follow
a socially appealing behavior. Finally, the framework was
thoroughly tested in a socially assistive scenario, in a realistic
apartment testbed and resorting to an autonomous mobile
social robot. The experiments’ results validate the proposed
approach for problems involving robot systems in Human-
Robot interaction scenarios.

I. INTRODUCTION

Social robots need to be capable of developing affective

interactions and to empathize with human users [1]. This

requirement involves the ability to infer and react according

to latent variables: the user’s affective and motivational

status.

The agent acting in a Human-Robot Interaction (HRI)

scenario must take into account the effects of its actions

in the human user, which are uncertain, and the sensory

information it receives, which is noisy. Planning under these

conditions is attainable through Partially Observable Markov

Decision Processes (POMDPs) [2]. POMDPs, through the

transition and observation models, deal with the aforemen-

tioned uncertainty, by probabilistically modeling the possible

outcomes of the agent’s different actions and the accuracy

of the sensory information. Furthermore, the problem of em-

pathizing with the human user adds the goal of information

gain on latent (i.e., not directly observed) state variables

which is addressed by the extensions to POMDPs introduced

by Partially Observable Markov Decision Processes with

Information Rewards (POMDPs-IR) [3]. In this context, the

paper introduces a POMDP-IR framework for planning under

uncertainty in HRI problems, which allows the agent to
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accomplish a given task, actively infer latent state variables

of interest and adapt its behavior accordingly.

The aforementioned framework is implemented in a real

robot system, to ensure it is capable of succesfully solving

HRI planning problems in practice.

II. RELATED WORK

In HRI scenarios, Decision-Theoretic (DT) approaches to

planning based on the POMDP framework are found in

assistive scenarios, such as the robot wheelchair [4], where

the goal is to recognize the intention of the user but do not

include social capabilities to improve recognition. Also, in

socially assistive settings, the POMDP framework models

the social interaction between robot and human users in,

e.g., nursing homes [5], although not taking into account

the user’s status. Finally, the POMDP was used to model

problems with latent variables and adapt the agent’s behavior

accordingly in an automated hand-washing assistant [6].

However, the agent in the latter work does not actively seek

to gain information on the user’s status, and is, therefore,

limited to react based on a possibly high-uncertainty belief

on the hidden variables.

The traditional POMDP model does not allow rewarding

low-uncertainty beliefs. Consequently, in order to obtain

a certain level of knowledge on the features of interest,

the POMDP framework needs to be extended to reward

information gain. This extension is provided through the

POMDP-IR framework. DT planning based on POMDPs-

IR has been applied to the problem of active cooperative

perception [3]. The present work, however, is focused on

multimodal human-robot interaction.

III. FRAMEWORK DESCRIPTION

A POMDP-IR can be expressed as a tuple

(S,A, T,R,Ω, O, γ) where: S = S1 × · · · × Sn represents

the environment’s factored state space, defining the model

of the world; A is a finite set of actions available to the

agent which contains the domain-level action factor Ad and

a Information-Reward (IR) action factor Ai for each state

factor of interest (A = Ad × A1 × · · · × Al, where l is

the number of IR actions); T is the transition function that

represents the probability of reaching a particular state s ∈ S

by a given state-action pair (T : S × A × S → [0, 1]); R is

the reward function, which defines the numeric reward given

to the agent for each state-action pair (R : S × A → R),

and is therefore given by R = Rd(s, ad) +
∑l

i=1
Ri(si, ai),

with s ∈ S, ad ∈ Ad, si ∈ Si, ai ∈ Ai, Rd the POMDP

reward model and Ri the information reward; Ω is a
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finite set of observations that correspond to features of the

environment directly perceived by the agent’s sensors; O is

the observation function which represents the probability of

perceiving observation o ∈ Ω after performing action a ∈ A

and reaching state s′ ∈ S (O : S×A×Ω → [0, 1]); γ is the

discount factor, used to weight rewards over time.

The POMDP-IR fits into the classic POMDP framework

and can, therefore, be represented as a belief-state Markov

Decision Process (MDP), in which the history of executed

actions and perceived observations are encoded in a proba-

bility distribution over all states: the belief state. Every time

the agent performs an action a ∈ A and observes o ∈ Ω, the

belief is updated by the Bayes’ rule:

bao(s′) =
P (o|s′, a)

P (o|b, a)

∑

s∈S

P (s′|s, a)b(s), (1)

where P (s′|s, a) and P (o|s′, a) are defined by the Transition

and Observation model, respectively, and

P (o|b, a) =
∑

s′∈S

P (o|s′, a)
∑

s∈S

P (s′|s, a)b(s) (2)

is a normalizing constant. Furthermore, the value function

V π(b), defined as the expected future discounted reward

given to the agent by following policy π, starting from belief

b:

V π(b) = Eπ

[ ∞
∑

t=0

γtR(bt, π(bt))
∣

∣

∣
b0 = b

]

, (3)

where R(bt, π(bt)) =
∑

s∈S R
(

s, π(bt)
)

bt(s), remains

approximately Piecewise Linear Convex (PWLC) in the

POMDP-IR framework. This way, the most common al-

gorithms for solving POMDPs, which exploit the PWLC

representation of the value function, can also be used to

solve POMDPs-IR. The optimal policy π∗ is characterized

by the optimal value function V ∗, that statisfies the Bellman

optimality equation:

V ∗(b) = max
a∈A

[

R(b, a) + γ
∑

o∈O

P (o|b, a)V ∗(bao)

]

. (4)

Figure 1 represents the projected POMDP-IR framework

for multimodal HRI, as a two-stage Dynamic Bayesian

Network (DBN), which depicts the dynamics of the HRI

problem.

A. States and Transitions

The agent acting in a HRI scenario considers two types of

state factors: the task variables T and the person variables

P . The task variables model the environment features that

provide information on the progress of the tasks. On the

other hand, the person variables track the human state and

are inherently latent. The latter are used to gain information

on the human user’s affective and motivational status and

adapt the robot behavior accordingly.

The number of state variables depend on the amount

of features essential to represent the environment and is,

therefore, dependent on the specific task. The criteria for the

selection of states involve a trade-off between operational
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Fig. 1. DBN representation of the DT model for multimodal HRI.

complexity and predicted system performance, since opera-

tional complexity increases with the number of states.

Furthermore, depending on the objectives of the agent

acting in a HRI setting, the task variables might not exist.

This is the case when the single goal of the agent is to gain

information on the human user.

A person variable can have a constant value over time if

its value does not change during the task. This is the case

of personal traits (e.g., Personality and Preferences), which

are relevant for the robot behavior and do not change for

the duration of the interaction. In Figure 1, Pk represents a

constant person variable.

Otherwise, person variables are inferred from the user’s

behavior at each time step (factors P1 to Pj in Figure 1),

which is represented in the model’s observations. These state

variables may consist of state factors of interest, according

to the POMDP-IR framework.

B. Observations and Observation Model

In a social HRI setting, observations reflect the user’s

behavior. This behavior is used to monitor the progress of

the task and infer the user’s affective and motivational status.

Observations are discrete, symbolic values, classified from

sensory data, which correspond to features of the environ-

ment that are observable in a given state.

The observation factors are contingent on the sensory

capabilities of the robot system. Nevertheless, the correct

understanding of the user’s status relies on the agent be-

ing capable of recognizing human communication methods.
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Consequently, the robot system ought to be able to recognize

speech and gestures in order to understand the human user’s

affective and motivational status.

The observation model is of key importance in the achieve-

ment of the information gain goals of the agent. It reflects

the probability of receiving a certain observation, given the

state of the environment and the action performed. Certain

actions, such as questioning or approaching the user, increase

the probability of perceiving certain observations. This fact

is of utter importance to actively gain information on the

user’s status. The dependency on the action is represented in

observations Om to Of in Figure 1.

C. Actions

The model of Figure 1 comprehends two types of actions:

Ad and Acommit. The former have an effect on the environ-

ment and are dependent on the actuators of the agent, while

the latter are used for the information gain goals of the agent.

Typically, the action domain Ad contains the minimum

set of functionalities which allow the agent to complete

its tasks. Social robots need to communicate in a natural,

easily understandable way with the human users. To achieve

this objective, the robot must be able to express different

moods and emotions. Consequently, the action domain Ad

of a social robot ought to include speech and/or gestural

capabilities and/or graphical emotion displays.

Following the POMDP-IR framework, besides the domain-

level action factor Ad, the model has additional action factors

Acommit for each state factor of interest. The state factors

of interest, in the problem under study, are included in

the person variables, as these contain the aforementioned

affective and motivational state of the human user. The

actions Acommit allow rewarding the agent for decreasing the

uncertainty regarding particular features of the environment.

D. Reward Model

In the DT model of Figure 1, rewards are either associated

with task objectives: Rd, or with the information gain goals:

Ri, i = 1, . . . , j. The sum of these rewards, RIR, constitute

the reward awarded to the agent at each time step.

The behavior of the robot consists of the sequence of

domain actions Ad the agent performs. In the social HRI

scenario, and in order to adapt the robot’s behavior to the

user’s affective and motivational status, the reward assigned

to an action depends not only on the task variables but also

on the person variables.

The information rewards Ri influence the behavior of

the agent, with the purpose of achieving a low uncertainty

regarding certain person variables. The value of these re-

wards are dependent on the threshold of knowledge required,

according to the POMDP-IR framework [3].

IV. SELECTED APPLICATION

The proposed approach was tested in a case study which

considers an active rehabilitation therapy task. In this task,

the patient moves the affected limb by him/herself, while the

robot therapist has the functions of coaching and motivating.

t t + 1
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Ad Rd

AFat. RFat.

OExer.
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Legend:
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Actions

Rewards

Fig. 2. DBN representation of the DT model for the robot therapist.

Summarizing, the goals of the robot therapist in the

considered rehabilitation scenario are: to help the user in the

given setting, by monitoring the patient’s movements (e.g.,

encourages the patient to continue if he/she stops performing

the exercise); and to adapt its behavior and, consequently,

the therapy style (e.g., nurture or challenge the patient),

in accordance with the patient’s affective and motivational

status.

A. Decision-Theoretic Model for the Robot Therapist

The application of the proposed framework to the robot

therapist scenario results in the DT model represented in

Figure 2.

1) States: The significant features of the environment in

which the robot is to operate are related to the human user.

The fulfillment of the task’s objectives require that the agent

keeps track of the user’s movements (state Exer.), possesses

knowledge regarding relevant personal traits (Pers.) of the

user and infers his/hers affective status (Fat.). Therefore, the

proposed DT model considers the state space represented, in

factored form, in Table I.

2) Observations: The observation space is represented,

in factored form, in Table I. Observations reflect the relevant

behavior of the patient, in accordance with the task’s goals. In

the present case study, the agent ought to classify the move-

ment performed by the patient (OExer.) and his/hers affective

status (OFat.). OExer. is obtained by visual classification of

the patient’s gestures and OFat. through classification of the

user’s verbal responses.

3) Actions: The proposed DT model considers two action

factors: the Action Domain Ad and the IR Action AFat..

At each time step, the agent chooses one value for each

action factor. The possible values for the action factors are

represented in Table I.
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TABLE I

STATE, OBSERVATION AND ACTION SPACES FOR THE ROBOT THERAPIST

CASE STUDY

Factors Values

States

Exer. Correct, Incorrect

Pers. Introverted, Extroverted

Fat. Tired, Energized

Observations
OExer. Proper, Wrong

OFat. Weary, Energetic, None

Actions
Ad

Nurture, Challenge, Query Patient,

End Therapy, None

AFat.

Commit Tired, Commit Energized,

Null

4) Transition, Observation and Reward Functions: The

proposed framework allows to take into account the effects

of time in the states of the DT model. Namely, in the

current case study, the transition function T encodes that

b(Fat. = T ired) increases at each time step in the absence

of opposing observations (OFat. = Energetic). That is,

the agent realistically believes that the patient is feeling

more tired over time. The transition function of this case

study dictates that the probability of the patient correctly

performing the exercise (Exer. = Correct) increases with

the motivation actions (Nurture or Challenge). Moreover,

Personality (Pers.) is modeled as a constant variable, not

inferred by the agent, as its value does not change during

the task.

The observation function O encodes the error in sensory

data classification. This means, for instance, that even if

the patient’s gesture is classified as incorrect (OExer. =
Wrong), the agent’s belief on Exer. = Incorrect is not

100% and the robot might require more information before

motivating the patient. Furthermore, the probabilities in O

take into account that information-gathering actions (such

as Query Patient) increase the probability of perceiving a

verbal response from the user (e.g., OFat. = Weary).

The DT model of Figure 2 rewards IR actions (RFat.)

and Ad actions (Rd). The information rewards are defined, in

accordance with the POMDP-IR framework, so that the agent

actively seeks to have a certainty on Fat. greater than 75%

(i.e., b(Fat. = T ired) > 0.75 or b(Fat. = Energized) >
0.75). Actions in Ad are rewarded in accordance with the

state of the environment: Encouragement actions (Nurture

and Challenge) are rewarded 0.2 whenever the patient is

incorrectly performing the exercise or 0.1 when he/she shows

signs of feeling tired, and penalized −0.1 otherwise. The

reward given to each action also depends on the state factor

Pers.: for an Introverted person, the Nurture action is

preferred while the Challenge action is favored for an Extro-

verted person; The Query Patient action is penalized with

−0.2; None is not rewarded nor penalized; EndTherapy re-

ceives high penalization (−1) when the patient feels energetic

and a reward of 0.1 otherwise. Rewards are defined over the

abstract states and actions of the DT model. Thus, because

it would be very impractical to obtain the models from

empirical studies, especially as the system becomes more

(a) Robot Platform
used in the experi-
ments.

(b) Living room area of the ISRoboNet@Home
testbed.

Fig. 3. Experimental setup for the robot therapist case study.

complex, the aforementioned reward values are tuned to lead

to a policy which handles the different patients adequately.

The discount factor in this case study is γ = 0.9.

V. EXPERIMENTS

The robot therapist case study was implemented in a

networked robot system which consists of: the MOnarCH

robot platform, represented in Figure 3(a) and an external

Kinect camera; and interacted, in four different experiments,

with distinct persons, in in the ISRobotNet@Home Testbed1,

which is represented in Figure 3(b).

A. Experimental Results

Each experiment considers a different user, which is clas-

sified according to his/hers personality (i.e., as introverted or

extroverted), and with regard to his/hers ability to perform

the exercise (athletic or unfit). The experiments carried out

within this work were recorded and are available at https:

//goo.gl/TlyXGT. Figure 4 plots the data acquired in

the experiments, namely the observations, actions and belief

on the two key state factors considered: Fat. and Exer..

Figure 5 represents an episode of experiment B where the

robot interacts with the user.

1) Experiment A: This experiment considers a user which

is classified as extroverted (Pers. = Extroverted) and

athletic. The user feels energetic for the first fifty seconds

(decision step 10), approximately, and tired afterwards.

At the beginning, the robot chooses not to act, since the ex-

ercise is well performed and the agent has a low uncertainty

regarding the fatigue status of the user. This uncertainty on

the state factor Fat., however, increases over time, driving

the robot to actively seek to reduce it, by querying the user

(decision step 3). The answer (OFat. = Energetic), informs

the robot that the user is still active and motivated, increasing

the certainty on Fat. = Energized. This behavior is

repeated until the user does not perform correctly the exercise

(OExer. = Incorrect) in decision step 11. Then, the robot

motivates the person through a challenging approach due to

the considered personality of the user and the current fatigue

status. After receiving information that the user now feels

tired (OFat. = Weary), the robot changes therapy style and

1http://welcome.isr.tecnico.ulisboa.pt/isrobonet/
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Fig. 4. Evolution of the Belief on the states Fat. and Exer. w.r.t. the decision episode, the observations received and the actions performed, for each
experiment.

adopts a nurturing approach. As the user continuously shows

not being able to carry out the exercise and the certainty on

Fat. = T ired increases, the robot finally chooses to end the

therapy in decision step 15.

2) Experiment B: This experiment considers a user clas-

sified as extroverted (Pers. = Extroverted) and unfit. The

user feels energetic for the first forty seconds, approximately,

and tired afterwards.

The behavior of the robot is similar to the previous

experiment while the user shows feeling energetic and cor-

rectly performs the exercise. Nonetheless, the user incor-

rectly performs the exercise more often, at which occasions

the robot acts in motivating with a challenging approach,

while the agent believes the user feels motivated/energetic.

Even though motivating the user, the robot keeps track of

his/hers fatigue and reacts when the uncertainty on Fat. is

high. Finally, the agent ends the therapy once it persistently

observes the user is not performing the exercise and feels

tired.

3) Experiment C: This experiment considers a user clas-

sified as introverted (Pers. = Introverted) and athletic.

The patient feels energetic up to, approximately, 45 seconds

(decision step 9), and tired afterwards.

The behavior of the robot is heavily dependent on its

knowledge regarding the fatigue status of the user. While

the uncertainty on the Fat. state factor is high, the robot

queries the user. Since the uncertainty on Fat. increases

over time, the agent performs the action Query Patient

until it perceives an answer OFat = Energetic or OFat =
Weary (decision steps 3 & 4 / 7 & 8). Nevertheless, the

robot performs the therapy task while actively gathering

information on the environment, motivating the user once the

belief on b(Fat. = T ired) is high, and ending the therapy

appropriately.

4) Experiment D: This experiment considers a user which

is classified as introverted (Pers. = Introverted) and unfit.
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Fig. 5. Episode of the experiment B where the robot queries the user.
Right and top left images show different views of the interaction between
the robot and the human; Bottom left image represents the interface of the
gesture classification application.

The user feels energetic for the first 40 seconds (decision step

8), approximately, and tired onward.

The behavior of the robot changes in accordance with

its belief on the states of the environment. In the present

experiment, there is a “trade-off” between motivating or

querying the user depending on the belief over the state

factors Fat. and Exer.. In decision step 3, the agent

queries the agent due to the high uncertainty on Fat..

Afterwards, the agent perceives no answer but observes the

user incorrectly performed the movement. This observation

does not translate, however, into an absolute certainty on

the exercise having been incorrectly performed (b4(Exer. =
Correct) ≈ 0.3), since the DT framework takes into account

sensor related noise. The agent, then, queries the user once

again (decision step 4), due to the increasing uncertainty

on the fatigue of the user. Once again, the Network Robot

System (NRS) receives no answer (OFat. = None), and

observes the user incorrectly performed the movement. This

time, the agent’s belief on Exer. = Incorrect is higher

(b5(Exer. = Incorrect) ≈ 0.95) and it motivated the user.

Nevertheless, the uncertainty on Fat. is still high on decision

step 6 and the robot once again queries the user, perceiving

this time an answer.

For the rest of the experiment, the robot follows a behavior

similar to the previous experiments, until it ends the trial in

decision step 14.

B. Discussion

Table II details the behavior of the robot for each ex-

periment. As expected: the number of motivation actions

is higher for the users classified as unfit, which incorrectly

perform the exercise more often than the athletic users; and

the number of query actions is higher for the users classified

as introverted.

The robot detected the fatigue status change from

Energized to T ired in all the experiments. Moreover, the

agent motivated the user upon detection of faulty movements,

either immediately after observing OExer. = Wrong (ex-

periments A, B and C) or after two consecutive observations

(experiment D). Finally, the agent ended the therapy when

consistently observing the user was not capable of proceed-

ing with the exercise.

TABLE II

BEHAVIOR OF THE ROBOT WITH REGARD TO THE EXPERIMENT

A B C D

Motivation actions 3 5 2 4

Query actions 4 3 5 5

Time elapsed until agent detected

change of users status (s)
15 15 15 20

Time elapsed until agent ends

therapy since it detected user is tired (s)
10 10 10 10

Duration of the experiment (s) 75 65 70 70

Overall, the DT approach to planning in the robot therapist

resulted in a behavior capable of achieving the task and

information goals, adaptive to the user’s status and socially

appealing.

VI. CONCLUSION

Building on the POMDP-IR framework, this work intro-

duced a DT approach to planning under uncertainty with

information rewards in social HRI. The properties of the DT

framework were demonstrated in the robot therapist case

study and the experiments’ results validate the proposed

framework for a problem involving robot systems in HRI

scenarios.

In future work and to further validate the framework

developed within this work, further experiments ought to be

performed, considering distinct scenarios of HRI. Further-

more, the model ought to be estimated from experimental

data [7] or learned through Reinforcement Learning (RL)

approaches [8], to overcome practical issues inherent to the

implementation of MDP-based models.
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