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Abstract— In this work we study the efficient search of
objects in domestic environments, using probabilistic logic to
represent uncertainty about object location and partially ob-
servable Markov decision processes (POMDP) for the decision-
making process regarding the movements to be carried out by
the robot to improve its belief about the object locations. We
propose the use of a semantic map that stores information about
the knowledge in the system and updates it, by an inference
process, with sensor information received from the object
recognition module. However, semantic maps are not capable of
actively search for more information in the environment. For
that reason a decision-making module, based on a POMDP
framework, is integrated in the system. Several experiments
were made in a realistic apartment test bed using every day
objects and a mobile robot, showing that this hybrid solution
makes the search process more efficient.

I. INTRODUCTION

In order to accomplish more complex tasks robots need to
be able to sense their environment and represent it seman-
tically [1]. Moreover, for most of domestic tasks some kind
of reasoning about the environment is required and, although
humans do this seamlessly, doing it with an autonomous
domestic robot is a challenge that has not yet been answered
in full.

Semantic maps are a powerful tool to address this issue
as they provide a framework to represent knowledge about
dynamic environments and can leverage the construction
of environment maps where objects can be relocated by
external factors (e.g., by human intervention) and uncer-
tainty in observations is an important factor. However, such
framework allows to infer from received observations but
is not able to actively search for objects. Thus, in this
paper we propose a more general framework that combines
the elegance of probabilistic knowledge representation and
the power of planning under uncertainty with a decision-
theoretic framework for an intelligent search for objects in a
home environment.

The probabilistic representation of the semantic map is
based on the probabilistic logic programming language
Problog [2]. This language extends Prolog with the pos-
sibility of attaching probabilities to statements. A proba-
bilistic statement is a Prolog statement with a probability
attached, meaning that there is a certain probability of that
statement being true. A Problog engine can perform several
probabilistic inference tasks. In this work we used solely
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Fig. 1: Information flow of the method proposed in this paper.
In our method, the semantic map is used as a input of the
decision maker for a proficient object search.

the probabilistic inference of a query given evidence, i.e.,
observations. For instance, consider this example of Bayesian
inference: given a statement, that expresses the probability
of observing an object at a given location and an evidence
consisting in a positive observation at that location, Problog
can be used to infer the probability of the object actually
being there.

The framework for planning under uncertainty that we
consider in this work is the partially observable Markov
decision processe (POMDP) [3], that models the interac-
tion of an agent with a stochastic and partially observable
environment. Despite their scalability limitation on larger
problems, POMDPs have proven to work well in small
to medium sized problems by computing approximate so-
lutions [4], [5]. In this work we avoid this limitation by
considering smaller POMDPs that model only one room.
If the initial belief for each POMDP is obtained from the
current probability distribution in the semantic map, then
it already includes the past experience on the system. By
repeatedly infer from observations and call the respective
POMDP controller for each room this process may continue
indefinitely and efficiently perform the system’s task while
overcoming scalability issues.

A. Related Work

Conceptual representations of indoor environments using
mobile robots were studied [6], but do not include the
flexibility given by our decision-making modules. POMDPs
and semantic maps have been previously combined, but only
for mobile robot active localization [7]. In turn, we focus
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Fig. 2: Example of knowledge base which can be used to
represent objects and places in a domestic environment.

on the problem of active object search and perception that
has received attention in previous works ([8], [9], [10]) but
not providing the integrated framework, capable of dealing
with occlusions and with the scalability that our approach
offers. Closest to our work, probabilistic conceptual maps
and probabilistic planning have been combined in object
search tasks [11]. Besides accounting for occlusions by other
objects, we are able to simplify the planning phase by
separating the decision-making process in different rooms.

B. Contributions

In this paper we provide a unified framework for an effi-
cient search for objects in a domestic environment, composed
with three modules: object perception, semantic map, and
decision-making. The main contributions of the paper are:
• An integrated system that actively searches for objects

in an environment using previously learned knowledge;
• A probabilistic framework for semantic map represen-

tation with hierarchical relations;
• A decision-theoretic model for active object search that

takes into account possible occlusions due to different
object sizes.

We start by giving a general overview of the framework in
Sec. II, and proceed to discuss each of the modules in detail
in Sec. III. Finally, we will present experimental results and
draw final conclusions in Secs. IV and V respectively.

II. GENERAL DESCRIPTION

The proposed system includes a probabilistic semantic
map module that infers its knowledge from information
perceived by the perception model and a decision-making
module that plans the best next location to search for objects,
given the current knowledge of the semantic map. Together,
they complement each other and provide a more proficient
and scalable framework for object perception. In Fig. 1, we
show the information flow through the different models.

In general, the probabilistic semantic map is the module
for reasoning in the whole environment, i.e., in our target en-
vironments, it maintains information about how the objects of
interest are distributed over rooms and inside each of them, as
well as providing occlusion rates based on this distribution.
This module is passive, providing learning but not planning
capabilities. Therefore, the decision-making module provides

the system with decisions for an intelligent search for objects.
This module decides how to act locally, inside each room,
which makes our approach more scalable since we may have
many simple decision-making modules instead of a large
complex one. It receives an initial distribution and occlusion
rates from the semantic map and returns information about
which objects are located or not inside the actual room. Both
modules communicate with the object perception module,
which returns the set of objects visible in front of the robot
at each particular moment.

In section III we will provide a more detailed description
of each module and discuss its particular features.

III. DETAILED DESCRIPTION

A. Object Perception

The object recognition module is based on the 3D recog-
nition framework of the Point Cloud Library [12] and com-
prises a training and recognition sub-modules. Point clouds
were acquired with an RGB-D camera on top of the robot.
We provide a brief description of each of the sub-modules:
• The training sub-module imports models for each object

class which are then rotated and converted to point
clouds from each different view. Several keypoints and
descriptors are extracted;

• The recognition process segments the scene’s point
cloud, filters the area of interest and applies a clustering
algorithm to the remaining point cloud. Finally, a rec-
ognizer algorithm, previously trained with the imported
models, is run to detect objects of interested.

B. Semantic Map

The semantic map is divided in two main parts: the knowl-
edge base and the reasoning engine. The knowledge base
stores the acquired information as an abstract knowledge
concept or as information regarding a specific instance in the
environment. The reasoning engine is where the information
from the perception module is processed and integrated into
the knowledge database.

1) Knowledge Base: The knowledge base accommodates
three types of knowledge: knowledge instances, object infor-
mation type and relations. Knowledge instances are used to
represent common sense information about specific concepts,
object information types are the physical representation of
the concept and relations represent the interconnections be-
tween knowledge instances. Figure 2 represents an example
of a knowledge base that categorizes objects and places.
Here, any given object can be immovable (e.g., table) or
movable (e.g., cereal box) and be in a given place. Besides,
we may easily understand the spatial relations between
instances. For example, although not being a place a cereal
box may be on a table which, in turn, is located in a given
room. By building instances with these kind of relations the
semantic map represents its knowledge.

2) Reasoning Engine: The reasoning engine is based on
the Problog language. For better visualization, an example
of the code used is shown in Figure 3. The first block
contains properties of objects, e.g., a coke is a sodacan,



sodacan(coke). cereal_box(cereal).
volume(coke, 6.60). volume(cereal, 16.60).
mobility(coke, 1). mobility(cereal, 1).

movable_object(X) :- cereal_box(X).
movable_object(X) :- sodacan(X).

object(X) :- movable_object(X).
immovable_object(X) :- table(X).

occlusion(X,Y) :- volume(X,VX), volume(Y,VY), VX>VY.

0.33::is_in(X,counter) ; 0.33::is_in(X,table) ; 0.33::is_in(X,bench) :- object(X).
P::seen(X,Y,T1,T2) :- is_in(X,Y), mobility(X,M), P is 0.6+0.1exp(-(T1-T2)/10M).
P::seen(X,Y,T1,T2) :- \+is_in(X,Y), mobility(X,M), P is 0.30.1exp(-(T1-T2)/10M).

Fig. 3: Problog code representing the proposed reasoning engine. See text for an overview and a description of its structure,
Section III-B.2.
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Fig. 4: Two-stage dynamic Bayesian representation of the
proposed POMDP model for the decision-making module.

the volume of a cereal box is 16.60, etc. The second block
represents deterministic relations between predicates, e.g., a
cereal box is a movable object, a movable object is an object,
etc. The third block models the probabilistic rules: the first
one states a uniform a priori distribution of locations for
any object X , while the second and third ones represent a
probabilistic observation model conditioned to the presence
of the object, e.g., if object X is on location Y , it has a
probability of P = 0.6+ 0.1e−(T1−T2)/(10M) of being seen,
where T1 − T2 is the time elapsed between observations,
and M is an heuristic mobility degree. The two last rules
correspond to a true positive and to a false positive case
respectively (’\+’ denotes logical negation).

C. Decision Making

The decision-making module is modeled under the
POMDP-IR [13] that allows to model standard POMDPs

for information gain. We present in Figure 4 a dynamic
Bayesian network representation of the model used to capture
the dynamics of the problem that follows the POMDP-IR
formulation. In the following, we present a more detailed
description of this model.

1) States and transitions: The model considers two differ-
ent types of variables, dubbed robot and object variables. In
particular, a robot variable X models the location of the robot
in the environment and object variables C1 . . . Cm model the
location of each object of interest, where m is the number
of objects currently existing in the semantic map. In this
model the robot is allowed to move to k waypoints that
represent the position of immovable objects. To account for
occlusions there must be at least two opposite waypoints
around each immovable object. Objects can be located in
any of the same k waypoints or plus an additional none
position. This additional location is used to take into account
the possibility that a given object is not in the actual room.

For the purpose of our task we consider a simple deter-
ministic state transition model both for robot movement and
object location. In practice, this means that we consider that
the robot’s navigation is always successful and that objects
remain static in their initial position during each run. Those
are realistic assumptions given that, in one hand, nowadays
there are reliable and accurate navigation algorithms that
work well in our kind of environments and can be separated
from the decision-making task. In the other hand, in these
environments it is not expected that objects are relocated
too often while the robot performs a search task and, even
if it happens, it will be detected in the following searching
episode.

2) Observations and occlusion model: The definition of
observation variables and their respective observation model
are the key for the behavior we want to achieve with this
model, as the algorithm will be guided by them to plan
the best perception actions. Thus, the model includes one
observation variable Oi for each object of interest (1 ≤ i ≤
m). Every time a perception action is triggered each of the
observation variables takes a value yes or no, indicating
whether that object was detected by the perception module
or not.

The observation model considers all possible occlusions
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Fig. 5: Representation of the setup used in the paper, for the experimental results. Fig (a) shows a picture of the robot used
in the experiments and Fig. (b) shows the test bed (which is usually used for @Home Robot Competitions), installed in the
ISR/IST’s facilities.

between objects. That is, every time the perception model
is called the decision maker takes into account all different
phenomena that may affec the perception algorithm. First,
there is an error rate associated with vision algorithms. Sec-
ond, there is a probability that an object is occluded behind
another in the same location, according to the proportion
between their sizes. In our model, we consider that an object
may be occluded only if it is smaller than some other given
object.

3) Actions: Following the POMDP framework used, there
are two kind of actions: domain Ad and information-
rewarding AIRi actions. Domain actions are those which
physically interact with the environment, that in our model
includes moving actions, that guide the robot through the dif-
ferent locations of interest in the environment, a perception
action that calls the perception module and perceives objects
in the actual location, and an additional doNothing actions
that indicates the end of a searching episode.

The set of information-rewarding actions include one for
each object of interest. This extra actions indicate whether
an object is believed to be in some location in the actual
room, not found in this room, or null if there is not enough
information.

4) Reward model: The set of rewards used follow the
set of actions previously mentioned. Therefore, the model
implements a small cost of 0.5 for each moving action and
0.1 for a perception actions. There is neither a cost nor
reward for doNothing action.

For the reward model of information-gaining actions, we
use the reward model equivalent of a belief threshold of
β = 0.9, meaning that an informative-gaining action will
be triggered every time the belief for that particular state
variable (object) is above that threshold. This will guide the
system to increase the available information about object
locations.

IV. EXPERIMENTS

For the experimental results we considered a robot in a
realistic scenario (a test bed representing a real apartment),
which was asked to find some objects.

3

2 1

Fig. 6: Kitchen map. Locations: 1 - Table 1; 2 - Table 2; 3
- Entrance

A. Experimental setup

For the experiments with real data, we use the MBot
platform (see Fig. 5(a)), in a test bed, located at the Institute
for Systems and Robotics, IST, Lisbon1 (see Fig. 5(b)). In
particular, our experiments consider the kitchen area of the
house, which can be visualized in Fig. 6. Here, there are two
tables where we can find two particular objects: a cereal box
and a coke can. All sensors are onboard and all processing
is autonomously performed in the robot computers.

B. Experimental results

We experimented the system with different object loca-
tions in 4 different tests. The robot’s path and the evolution
of the system knowledge, represented as the belief of each
object, for each experiment are shown in Figure 7. Every
experiment consist of two consecutive runs. Note that the
belief at the beginning of each run is the one inferred by
the semantic map and sent to the POMDP controller. In the
first run this is always an uniform belief, while in the second
run it is already updated according to the observations made
during the first run.

In experiment A we tested the system’s behavior when
both objects were on Table 1. In the first run the robot stops
at both tables to search for objects. In particular, note that on

1http://welcome.isr.tecnico.ulisboa.pt/isrobonet/
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(f) Exp.D: Robot’s Path
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(g) Exp.C: Belief Evolution
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Fig. 7: Exp.A Cereal box: Table 1, Coke can: Table 1. Exp.B: Cereal box: Table 2, Coke can: Table 2. Exp.C: Cereal box:
Table 1, Coke can: none. Exp.D: Cereal box: Table 1, Coke can: Table 2 in Run 1, Table 1 in Run 2.



Table 1 it first detects only the cereal box and then moves to
the opposite side of the table, predicting a possible occlusion
that indeed is happening. It is also observable that the belief
evolution shows that the system can retrieve the location of
the objects. When we start the second run the semantic map
updates its information and sends a new and very confident
initial belief. Therefore, the decision-making module only
decides to search in Table 1 and immediately ends the run.
As a consequence, the second run has less timesteps that the
first one.

Experiment B is similar to the first one, with the exception
that both objects are now located on Table 2. Then, the robot
searches in both tables, going to both sides of Table 2 to
prevent occlusions. In the second run it goes directly to Table
2 and immediately returns to the entrance, given the high
certainty on the information available. Again, this means that
the second run is significantly shorter than the first in the
number of timesteps.

In experiment C a different scenario was tested, in which
a cereal box was placed on Table 1 and the coke can was left
out of the scene. Here, the robot searches on Table 2 and in
both sides of Table 1 in the first run, to find that the cereal
box is on Table 1 and coke most likely is not in the room.
Since the semantic map updates its belief based on what it
observes, in the second run it sends a low uncertainty initial
belief about the cereal but a high uncertainty belief about
the coke. Thus, in the second run the system’s behavior is
similar to the first with exception that, since it only has a
high uncertain information about the coke can position, it
primarily searches for that object and takes less timestep in
the search process.

Finally, in experiment D we introduced some dynamic in
the environment and changed the location of objects between
runs. Namely, the cereal box was located on Table 1 during
both runs while the coke can was located on Table 2 during
the first run and moved to Table 1 in the second run. We may
note that the system is able to deal with this change in the
environment. Although the initial belief sent by the semantic
map shows a low uncertainty belief about both objects, the
decision-making module still checks their location to find
that the coke is not anymore in the place where its belief
was higher. That fact leads the decision-making module to
drive the robot to search in other locations, more accurately
updating its belief during the second run.

V. CONCLUSIONS

In this work we presented an integrated framework that
combines the representation potential of reasoning with
probabilistic logic with the power of decision-making under
uncertainty with decision-theoretic methods. By establishing
a communication between both modules we are able to per-
form tasks that involve search for objects in an environment,
given the relation between objects built in the semantic map
and given the level of knowledge about positions of objects
at every moment.

We show with real experiments that such framework works
well in practice, being reliable and efficient in its task.

Moreover, this is a scalable approach that overcomes one
of the main challenges in planning for these kind of tasks.
For larger problems it is possible to build a semantic map for
the whole environment with a POMDP model for each room,
building a hierarchical system. This allows to overcome the
known scalability issues on POMDP solving, as each model
remains limited to each room and with a small size, and the
lack of intelligent decisions on the semantic map reasoning
engine. Also, they extend semantic mapping capabilities by
allowing the system to do an intelligent search for objects,
rather that only reasoning. The communication between both
modules is natural since both represent their knowledge as
probability distributions, or beliefs, over possible locations
of objects.

In future work, we would like to extend this work to
larger problems. For instance, by experimenting in a house
with several divisions where the complexity of the relation
between objects and locations is higher. Multi-robot systems
may also provide a challenging environment where cooper-
ation must be taken into account.
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