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ABSTRACT
Linear value function approximation in Markov decision pro-
cesses (MDPs) has been studied extensively, but there are
several challenges when applying such techniques to par-
tially observable MDPs (POMDPs). Furthermore, the sys-
tem designer often has to choose a set of basis functions.
We propose an automatic method to derive a suitable set of
basis functions by exploiting the structure of factored mod-
els. We experimentally show that our approximation can
reduce the solution size by several orders of magnitude in
large problems.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence - Intelligent agents
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Algorithms
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1. INTRODUCTION
Partially observable Markov decision processes provide a

powerful framework for agent planning under uncertainty [3].
To tackle large problems with many state features, factored
POMDP models have become popular, but their solutions
can suffer from large value functions. Linear value function
approximation has been popular in the literature on fully
observable MDPs as a way to compute compact value func-
tions [2]. Extensions to POMDPs have been proposed [1, 7],
but are under-explored. In this paper, we propose to exploit
the dynamics of the model to generate a suitable set of basis
functions for point-based POMDP algorithms. We show in
two benchmark problems that our method works in practice
and helps to scale up POMDP solving.
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2. LINEAR VALUE FUNCTIONS
A POMDP value function is composed of so-called α-

vectors and is piecewise linear and convex [3]. We approx-
imate each α-vector by a linear combination of basis func-
tions. We define a set of allowable vectors A ∈ H ⊆ R|S|

via a set of nh basis functions H = {h1, . . . , hnh}. H is

the linear subspace of R|S| spanned by the set of basis func-
tions H. In factored models each state is represented by a
factored state x = (x1, x2, . . . , xn), which assigns a value to
each state variable Xi, and each basis function’s scope is re-
stricted to a subset of variables Ci ⊆ X. Then, α-vectors are
approximated by α̃-vectors, written as a linear combination
of basis functions hi:

α̃(x) =

nh∑
i=1

ωα,ihi(ci). (1)

Point-based POMDP methods compute the maximizing
vector at a belief point b with the operator backup(b), which
can be extended to approximated linear value functions:

backup(b) = argmax
{g̃ba}a∈A

b · g̃ba, where

g̃ba = R(s, a) + γ
∑
o

argmax
{g̃kao}

b · g̃kao, and

g̃kao(x) =

nh∑
i=1

ωk,ig̃
i
ao(x), with

g̃iao(x) =
∑
x′

p(o|x′, a)p(x′|x, a)hi(c
′
i). (2)

We consider an optimized formulation of the backup op-
erator [6], replacing gao vectors with their approximated
version g̃ao. Inner products may also be performed com-
pactly [7]. Finally, at the end of each backup operation we
project the resulting vector back into the space spanned by
the basis functions.

3. BASIS FUNCTION CONSTRUCTION
The choice of basis functions is crucial to the success of

linear value function approximation. We propose to take
advantage of factored models to automatically search for a
good set of basis functions.

Note that the scope of each g̃iao vector is dependent on
the scope of basis function hi and the observation’s scope.
We define two sets Xo and Xō, which define, respectively,
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Algorithm 1 Automatic construction of basis functions

H ← nil
for all a ∈ A do
X ′
o ← Γ(Oa)

USV T ← svd(Tx′
o
)

H ← H ∪ V
for all X ′

j /∈ X ′
o do

USV T ← svd(Tx′
j
)

H ← H ∪ V
H ← H ∪Ra

return linearly independent columns of H

state factors which are in the observation’s scope, and those
which are not. Mathematically, if we replace basis function
scopes in (2), it can be split in two different cases, taking into
account that K =

∑
x′
o
p(o|x′

o, a)p(x′
o|Γ(x′

o), a) is constant,

independent of i, and, for any j,
∑

x′
j
p(x′

j |Γ(x′
j), a) = 1:

g̃iao(x) =
∑
x′
o

p(o|x′
o, a)p(x′

o|Γ(x′
o), a)hi(x

′
o) if C′

i = Xo

K
∑
x′
i

p(x′
i|Γ(x′

i), a)hi(x
′
i) otherwise

(3)

At this point, we may rewrite the equations in matrix
form, where Tx′

j
: p(x′

j |Γ(x′
j), a) and Ωx′

j
: p(o|x′

j , a):

g̃iao =

{
Ta

x′
o
Ωao

x′
o
hi if C′

i = Xo

KTa
x′
i
hi otherwise

(4)

Both cases represent linear transformations from R|C′
i| to

R|Γ(C′
i)|. Geometrically, the result of each of them should be

as close as possible to the space spanned by the basis func-
tions, therefore we propose to use the right singular vectors
of T matrices as basis functions. Finally, we include the
reward function in H to ensure that rewards can be repre-
sented by the set of basis functions. Our methodology is
summarized in Algorithm 1.

4. EXPERIMENTS
We implement our ideas in the point-based POMDP solver

Symbolic Perseus [5]. We apply our method to the network
management problem [5] and to a variation of the fire fight-
ing problem [4], with a fixed number of 2 agents and increas-
ing number of houses. Network management models are run
with a belief set of 1000 points and fire fighting models with
500 belief points. Value iteration is run for 50 iterations,
and results are averaged over 100 runs of 50 steps each. All
sets of basis functions were automatically found by the pro-
cedure described in Section 3. We report in Figure 1 the
average sum of discounted rewards and solution sizes (com-
puted as the total number of values needed to store the value
function) for both domains.

There are gains in solution size up to 3 orders of magni-
tude in the network domain and more than 1 in the fire fight-
ing domain, which increase with domain sizes. Our method
performs better than a random policy and close to plain
Symbolic Perseus. There is a small decrease in policy qual-
ity, more noticeable in the network domain, but which is
expected given the approximate nature of our method.
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Figure 1: Network management (a), (b) and fire fighting
(c), (d) problems. Comparison between Symbolic Perseus
and its extension with linear value function approximation.

5. CONCLUSIONS
Applying linear value function approximation to POMDPs

is feasible, although not straightforward. We automatically
exploit a problem’s structure to derive a good set of basis
functions and experimentally test our technique in a point-
based method. We show large gains in the solution size for
larger problems while maintaining a good policy quality.
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